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the ideal case (⌫ = 1), the number of entangled pairs
scales logarithmically in 1/✏, which is the number of time
bins operated over so that one photon arrives on average.
This scaling is the same as for the optimal state merging
protocol [31], specified by the conditional entropy of the
state (Eq. (5)) [12]. When errors are su�ciently large
(⌫ ⇡ 60%), the memories are read out after a single time
bin. Thus, an e↵ective memoryless scheme similar to that
of Ref. [10] is recovered, with entanglement consumption
scaling as 1/✏ [32].

Assuming an e↵ective detection bandwidth of 10 GHz,
a total area of photon collection of 10 m2, and imaging in
the V band (centered around 555 nm), we can estimate
the resources needed for imaging a star of magnitude 10,
which is around the limit of the CHARA optical interfer-
ometric array [33]. Here we find that our ideal scheme re-
quires ⇠20 memory qubits per site and an entanglement
distribution rate of ⇠200 kHz. The improvement over the
rate necessary for a memoryless scheme [10] with the 10
GHz e↵ective bandwidth is a factor of 5⇥104. Extending
the current limit of 330 m baseline of CHARA [34] to re-
alistic quantum network scales greater than 10 km would
increase resolution from the mas to the µas regime [12].
Finally, we note that the bandwidth of direct interfer-
ometers can in practice be adjusted to enhance signal
strength at the expense of resolution [34]. While the
present method is limited by the bandwidth of quantum
memory, a number of techniques can be employed to ex-
tend our approach to broadband operation, as discussed
in Ref. [28].

In order to image a stellar object, telescope arrays con-
sisting of N > 2 sites can be used to sample the visibility
g(x) across N � 1 points between x = 0 and x = b (b
is the baseline, or maximal length). According to the
Van Cittert-Zernike theorem [35], a Fourier transform
then yields an estimate of the stellar intensity distribu-
tion I(�). To operate in this manner, our network proto-
col can be generalized to N > 2 nodes. Under conditions
when at most one photon is incident on the telescope ar-
ray, at each site we encode the optical mode in a binary
code, as in the two-node case. The nonlocal parity checks
can now be performed using either N -qubit GHZ states
which preserves coherence across the entire array or with
W states, which collapses the operation into pairwise
readout [28]. While a classical Fourier transform of ex-
tracted pairwise visibilities may be performed, the GHZ
approach allows us to perform a quantum Fourier trans-
form directly on the stored quantum state (see Fig. 3).
The coherent processing of the visibilities in the latter
case results in an additional improvement in the signal-
to-noise ratio, since the measurement noise associated
with pairwise measurements of the visibilities is avoided.
The exact improvement depends on the nature of the
source distribution, but can be on the order of

p
N [28].

In conclusion, we have proposed a novel scheme for
performing nonlocal interferometry over a quantum net-

FIG. 3. Generalization of the protocol to N > 2 sites in the
telescope array. Decoding with a W state collapses the net-
work state to two nodes, and the protocol continues as before.
The visibility data is stored in a classical memory until enough
events have accumulated to perform a Fourier transform. Us-
ing GHZ states instead preserves coherence across the net-
work. Quantum teleporting the memories to one site for con-
venience, a quantum Fourier transform is applied, yielding
the desired intensity distribution directly as the probabilities
of measurement outcomes.

work, relevant for astronomical imaging. By encoding
the quantum state of the incoming photons into mem-
ory, we realize an e↵ective “event-ready” scheme with
e�cient entanglement expenditure. The nonlocality is vi-
tal for removing vacuum noise in imaging weak thermal
light, and distributed entanglement circumvents trans-
mission losses. Hence, our scheme enables near-term
quantum networks to serve as a platform for powerful
optical interferometers, demonstrably superior to what
can be achieved classically. Furthermore, quantum algo-
rithms can be used to process the stored signals such that
the stellar intensity distribution can be inferred with a
further improvement in the signal-to-noise ratio.

While we focused on addressing fundamental limita-
tions, real-world interferometry su↵ers from many other
practical challenges such as stabilization and atmospheric
phase fluctuations [5]. In Table I of the Supplement [12],
we consider various challenges and possible solutions. For
example, in Earth-based systems, atmospheric distortion
can be tackled via a combination of adaptive optics and
fringe-tracking. Such techniques, while challenging, are
already being deployed in smaller-scale astronomical in-
terferometers [3] and are fully compatible with our pro-
posal [12]. Moreover, these challenges and control meth-
ods do not scale unfavorably with the baseline beyond
certain physical correlation lengths [5], such that the
construction of very large telescope arrays can be en-
visioned. Alternatively, space-based implementation is

Let’s assume it 
all works;

what kind of 
physics can we 

do?
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Experimental implementation is then feasible with near-term technology, enabling optical imaging of
astronomical objects akin to well-established radio interferometers and pushing resolution beyond what is
practically achievable classically.
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High-resolution imaging using large telescope arrays is
by now a well-established technique in the microwave and
radio-frequency domains [1,2]. Although extending to the
optical domain may offer substantial advantages in terms of
resolution [3,4], this task is extremely challenging in
practice. The requirement of interferometric stabilization
at optical wavelengths and the weakness of light sources in
this domain have precluded the widespread adoption of
optical telescope arrays [5]. Notably, the weaker light
intensities make phase-sensitive heterodyne detection
infeasible due to vacuum fluctuations [6]; therefore,
high-resolution optical telescopes are operated by directly
interfering the collected light [7]. Then, the size of the array
(and consequently resolution) is ultimately limited by
transmission losses between telescope sites.
In this Letter, we propose a new approach to overcome

these limitations with networks [8] of quantum memories
connected via entanglement. Specifically, we describe a
scheme for efficiently determining the optical phase differ-
ence between twowidely separated receivers. Each detector
runs a “quantum shift register,” storing incident photon
states at a rate that is matched to the inverse detection
bandwidth. Then, at the anticipated mean photon arrival
rate, the memories are interrogated with entangled pairs to
provide information akin to that obtained from a radio
interferometer. Employing quantum repeater techniques
[9], this approach completely circumvents transmission
losses. The resulting increase in baseline to arbitrarily large
distances potentially allows for substantial enhancement in
imaging resolution [4].
Before proceeding, we note that the use of entanglement

to connect remote telescope sites has been proposed
previously by means of postselected quantum teleportation
of incident optical photons [10]. The key limitation of this

visionary proposal is the requirement of an excessive
amount of distributed entangled pairs. They must be
supplied at a rate similar to the spectral bandwidth of
the optical telescope, which is currently not feasible. In the

FIG. 1. Overview of basic operation. Light from a distant
source is collected at two sites and stored in quantum memory
over time bins digitized by detector bandwidth. Both the quantum
state and the arrival time of an incident photon are encoded in a
binary qubit code. For example, if the photon arrives in the fifth
time bin, corresponding to binary representation 101, we store it
in a quantum state with flipped first and third qubits at each node.
Decoding of the arrival time is accomplished by nonlocal parity
checks assisted by entangled pairs, projecting the memories onto
a known entangled state. The phase information can then be
extracted without directly interfering the signal from the two
memories, thus circumventing transmission losses. Network
resources scale only logarithmically with source intensity ϵ.

PHYSICAL REVIEW LETTERS 123, 070504 (2019)
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of incident optical photons [10]. The key limitation of this
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the optical telescope, which is currently not feasible. In the

FIG. 1. Overview of basic operation. Light from a distant
source is collected at two sites and stored in quantum memory
over time bins digitized by detector bandwidth. Both the quantum
state and the arrival time of an incident photon are encoded in a
binary qubit code. For example, if the photon arrives in the fifth
time bin, corresponding to binary representation 101, we store it
in a quantum state with flipped first and third qubits at each node.
Decoding of the arrival time is accomplished by nonlocal parity
checks assisted by entangled pairs, projecting the memories onto
a known entangled state. The phase information can then be
extracted without directly interfering the signal from the two
memories, thus circumventing transmission losses. Network
resources scale only logarithmically with source intensity ϵ.
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General: Quantum network allows to 
separate the tasks of collecting
astronomical photons from that of 
transporting and processing them



Large array aperture and 
apodization synthesis for 
exoplanet spectra and imaging
Toward the goal of observing Earth-like exoplanets
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Idea: a 1-D optical interferometric array
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Plotting the power receptivity on a log scale allows us to see that, 
while one beam has a null where the other has a maximum the 
general level of the suppressed beam is on the order of 1/100.
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Idea 1: Improvement with larger arrays. We can improve the suppression of each beam in the 
area of its minimum by increasing the number of apertures; but only slowly.  The beams for 32 
apertures shown here have narrower main lobes but only a ~10-3 suppression near their minima.
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Tapered weighting pattern for each of 
32 apertures.  This is at the E field level, 
not the power level; so the same 
pattern but alternating in sign (below) 
applies to the alternating sum.

Idea 2: Improvement with tailored coupling.  We can increase the 
suppression at the minimum, at the cost of broadening the main lobe, by 
tapering, ie selectively attenuating the incoming beams (akin to the PFB).
The tapering pattern shown here produces the 10-10 suppression/contrast we 
would need to separate the light from Earth versus the Sun.



Precision stellar astrometry for 
mid-frequency gravitational wave 
detection
Gravitational waves shake the sky – by a tiny, tiny, bit
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JULIAN DATE - 2440000.0 (103 days) 
Fig. 1.—Timing residuals for PSR 1133+16 

are the first and second derivatives, respectively, of P at 
tQ. Effects due to pulsar position, proper motion, and an 
arbitrary time origin are presumed removed. 

The parameters f0, Pq, P0, and P0 are fitted to the 
data in a least-squares sense, resulting in a predicted tn. 
Residuals, Ar„, are formed by subtracting tn from the 
measured arrival time of the nth pulse. Residuals are 
usually nonzero, with root mean square (rms) values of 
between 10 fis and 2 ms. Receiver noise fluctuations 
account for the residuals in only the weakest pulsars, 
while rms residuals several times that expected from 
receiver noise alone are found in moderate to strong 
pulsars. Residuals for pulsar PSR 1133+16 are shown in 
Figure 1. 

III. ANALYSIS TECHNIQUE 

a) Gravitational Perturbations 
A weak gravitational wave traversing the Galaxy will 

affect the period, P, of an emitted pulse train such that 
the arrival time of a particular pulse will be perturbed 
from the arrival time expected in wave-free space. For a 
plane wave traveling in the positive z-direction with 
amplitude h(t - z), we compute the fractional change 
in the pulse frequency, v = 1/P, to be (see Estabrook 
and Wahlquist 1975; Hellings 1983) 

^ \ cos2<f>[ 1 — cos 0] 

X[h(t)-h(t- l- lcos0)], (1) 

where / is the Earth-pulsar distance at an angle 6 to the 
propagation direction (z-axis), and <i> is the angle be- 

tween a principle polarization vector of the wave and 
the projection of the pulsar position on the transverse 
plane (the x-y plane). The effect of a gravitational wave 
on the timing data is to induce fluctuations proportional 
to h(t) in the time derivative of the phase residuals in 
Figure 1. Hidden at some level in the data of Figure 1 is 
a small stochastic contribution due to the cosmic gravi- 
tational radiation background. 

In principle, gravitational waves with periods of up to 
the typical one-way light time between the Earth and the 
pulsar (~ 103 yr) can be seen in the data. However, the 
total span of the data covers only a dozen years, so there 
is an upper limit of about 108 s for the periods to which 
the data are sensitive. It should also be noted from 
equation (1) that data from any pulsar contain informa- 
tion about h(t) at the time and place of reception (i.e., 
at Earth) and about the value h(t) had at the pulsar at 
the time of emission of the signal. Thus, data from any 
pulsar will have a gravitational wave signal in common 
with all other pulsars (though with an amplitude scaled 
by 1 - cos 0) as well as a component of the signal 
which will be independent of the others due to the long 
light times between pulsars compared with the 12 yr 
data span. When data from several pulsars are cross-cor- 
related, this common signal will allow one to dig into 
the pulsar noise to detect a possible common gravita- 
tional wave signal. 

b) Cross-Correlation 
The fractional frequency shift observed in the data on 

pulsar number i may be written 

(2) 

where h(t) is the gravitational wave signal common to 
all pulsars (the h(t) term on the right of eq. [1]), gives 
the angle factor ¿ cos2<|> (1 - cos 0) for the /th pulsar, 
and n^t) represents all noise sources unique to the 
pulsar, including the h(t — l - /cos 0) term in equation 
(1) since each pulsar will be at a unique /, and 0(. It is 
assumed that h(t) is due to an isotropic background and 
is continuous and stochastic. The purpose of our data 
analysis will be to isolate the power spectrum oí h(t) in 
the data. 

When data from two pulsars are cross correlated, the 
result is 

C,7(t) = alaj(h2) 

+ ai(hnj) + ay(«,7i) + <n,ny>, (3) 

where 

(h2) = ^ fT T h(t)h(t + T)dt (4) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

Hellings and Downs 1983

Basic result: if a GW is 
passing by the observer
then an alternating 
quadrupolar pattern of 
red/blue shifts is seen 
from distance sources.

Radial Doppler 
Method

Effect of passing gravitational wave
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FIG. 1: Vector fields �i+ (upper pane) and �i⇥ (lower pane) for a gravitational wave propagating
towards the north pole �gw = ⇡/2. The maps use an Aito↵ projection in equatorial coordinates
(↵, �), with origin ↵ = � = 0 at the centre and ↵ increasing from right to left. The gray-scale in
the background shows the magnitude of the vector field (the lighter the bigger), which is equal to
1
2 cos � in both cases.

These sets of coe�cients can be used to decide if a signal from a gravitational wave is
detected in the data (see again Section 5 of [36]). In addition to the standard statistical
criteria, the symmetries of the signal and in particular the fact that the power is equal in
the toroidal and spheroidal harmonics at each order as well as the decrease of the power
with l given by (52) can be used to distinguish the signal due to gravitational waves from
other kinds of signals. If a signal is detected for some frequency ⌫ the VSH coe�cients can
be converted back to the 6 parameters h

+
c , h

+
s , h

⇥
c and h

⇥
s , ↵gw, and �gw using the model

above and the transformation laws of the coe�cients under rotations as described e.g. in
[36, Section 3]. To increase the signal-to-noise ratio when computing (↵gw, �gw) one can also
analyze the formal sum Vc +Vs. As discussed in Section V these estimated values of the
gravitational wave parameters should be used for a final fit of those parameters directly in
the astrometric solution.

Klioner, arXiv:1710.11474

constants satisfying the usual transverse-traceless gauge
conditions, and the wave vector kμ ¼ ðω;−ωq⃗Þ is null. The
observed photons follow null geodesics from the star
to Earth; integrating the geodesic equations gives the
change in the coordinate components of the photon four-
momentum. The GWalso changes the observer’s tetrad: an
orthonormal set of vectors parallel transported along
Earth’s worldline. Combining these gives the change in
the tetrad components of the four-momentum, and, hence,
the measured frequency and astrometric position.
The frequency perturbation is described by the redshift

1þ z≡Ωemit=Ωobs, where

z ¼ ninj

2ð1 − q⃗ · n⃗Þ
½hijðEÞ − hijðSÞ&; ð1Þ

this is the foundation of PTA efforts to detect GWs [17,18].
The redshift depends (anti)symmetrically on the metric
perturbations at the “emission” and “absorption” events at
the star (S) and Earth (E), respectively, (i.e., z depends only
on the difference ½hijðSÞ − hijðEÞ&). This symmetry arises
from the end points of the integral along the null geodesic
from the star to the Earth. The redshift can be integrated to
give the timing residual signal searched for by PTAs.
The astrometric perturbation also depends on the Earth

and star metric perturbations, although not symmetrically
because the perturbation to the spatial vectors in the
observer’s tetrad depends only on the metric at Earth.
The expression for the astrometric deflection is lengthy;
however, it simplifies in the limit where the star is many
gravitational wavelengths away from Earth [10];

δni ¼
ni − qi

2ð1 − q⃗ · n⃗Þ
hjkðEÞnjnk −

1

2
hijðEÞnj: ð2Þ

In this limit the astrometric deflection depends only on
the “Earth term.” The “star term” (or “pulsar term”) is
also sometimes dropped in PTA searches for individually
resolvable sources because each pulsar is at a different
(generally poorly constrained) distance from Earth, so the
pulsar terms have different frequencies and phases and may
be treated as an effective noise source. Recent searches
have tended to include the pulsar terms (see, e.g., searches
for individual binaries from the three PTAs [19–21], as well
as Refs. [22–25]), which has the benefit of increasing the
observed signal to noise at the expense of fitting for the
distance to each pulsar.
Gaia’s GW sensitivity comes from the large number of

stars it observes. Stars are typically separated by many
gravitational wavelengths; therefore, each star term will be
different (as well as being suppressed by the distance to the
star) whereas the Earth term is dominant and common to all
stars. It is this common Earth term that Gaia aims to detect.
Including the star term marginally increases the signal-to-
noise ratio for the closest few stars but makes a negligible
difference for the majority (e.g., a GW with wavelength

λ ¼ 1016 m deflecting a typical star at d ¼ 10 kpc gives a
star term suppressed by λ=d ≈ 10−5). Figure 1 shows the
Earth term astrometric deflection pattern for a field of
distant stars.
Data analysis.—This section describes how to search for a

monochromatic GW in an astrometric data set. The likely
astrophysical source of such a GW is a circular super-
massive black hole binary with total mass in the range
ð107–1010Þ M⊙. Such systems spendmost of their lifetime in
the relatively weak gravitational field where they can be
safely assumed to be nonevolving over the observation
period [26]. Points on the sky are denoted as n⃗, and vectors
tangent to the sky are denoted as h. For small vectors
jhj ≪ 1, e.g., the GW astrometric deflection, the sum
n⃗0 ¼ n⃗þ h gives a nearby point on the sphere.
The GW metric perturbation may be written as

hijðΨ̄Þ ¼ ðAþH
þ
ijðq⃗Þeiϕþ þ A×H×

ijðq⃗Þeiϕ×Þe2πift; ð3Þ

where Hþ
ij; H

×
ij are the usual GW basis tensors, and Ψ̄

is a seven-dimensional parameter vector: two amplitudes
Aþ; A×, two phases ϕþ;ϕ×, the GW frequency f, and two
angles describing the direction q⃗ to the GW source.
The data set S consists of N separate astrometric

measurements of M stars. The different stars (and mea-
surements) are indexed by I (and J). The observations are
made at times tJ (for simplicity the tJ are assumed to be the
same for all stars);

S ¼ fs⃗I;JjI ¼ 1; 2;…;M; J ¼ 1; 2;…; Ng: ð4Þ

FIG. 1. Orthographic projection of the Northern hemisphere
with 103 stars. A GW from the north pole (black dot) causes stars
to oscillate at the GW frequency. The black (red) lines show
movement tracks for a linearly plus (cross) polarized GW. For
clarity, the GW has an unphysically large strain amplitude of
A ¼ 0.1. The fourfold rotational symmetry of the transverse-
traceless GWs is clearly imprinted on the sky.
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momentum. The GWalso changes the observer’s tetrad: an
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The expression for the astrometric deflection is lengthy;
however, it simplifies in the limit where the star is many
gravitational wavelengths away from Earth [10];

δni ¼
ni − qi

2ð1 − q⃗ · n⃗Þ
hjkðEÞnjnk −

1

2
hijðEÞnj: ð2Þ

In this limit the astrometric deflection depends only on
the “Earth term.” The “star term” (or “pulsar term”) is
also sometimes dropped in PTA searches for individually
resolvable sources because each pulsar is at a different
(generally poorly constrained) distance from Earth, so the
pulsar terms have different frequencies and phases and may
be treated as an effective noise source. Recent searches
have tended to include the pulsar terms (see, e.g., searches
for individual binaries from the three PTAs [19–21], as well
as Refs. [22–25]), which has the benefit of increasing the
observed signal to noise at the expense of fitting for the
distance to each pulsar.
Gaia’s GW sensitivity comes from the large number of

stars it observes. Stars are typically separated by many
gravitational wavelengths; therefore, each star term will be
different (as well as being suppressed by the distance to the
star) whereas the Earth term is dominant and common to all
stars. It is this common Earth term that Gaia aims to detect.
Including the star term marginally increases the signal-to-
noise ratio for the closest few stars but makes a negligible
difference for the majority (e.g., a GW with wavelength

λ ¼ 1016 m deflecting a typical star at d ¼ 10 kpc gives a
star term suppressed by λ=d ≈ 10−5). Figure 1 shows the
Earth term astrometric deflection pattern for a field of
distant stars.
Data analysis.—This section describes how to search for a

monochromatic GW in an astrometric data set. The likely
astrophysical source of such a GW is a circular super-
massive black hole binary with total mass in the range
ð107–1010Þ M⊙. Such systems spendmost of their lifetime in
the relatively weak gravitational field where they can be
safely assumed to be nonevolving over the observation
period [26]. Points on the sky are denoted as n⃗, and vectors
tangent to the sky are denoted as h. For small vectors
jhj ≪ 1, e.g., the GW astrometric deflection, the sum
n⃗0 ¼ n⃗þ h gives a nearby point on the sphere.
The GW metric perturbation may be written as

hijðΨ̄Þ ¼ ðAþH
þ
ijðq⃗Þeiϕþ þ A×H×

ijðq⃗Þeiϕ×Þe2πift; ð3Þ

where Hþ
ij; H

×
ij are the usual GW basis tensors, and Ψ̄

is a seven-dimensional parameter vector: two amplitudes
Aþ; A×, two phases ϕþ;ϕ×, the GW frequency f, and two
angles describing the direction q⃗ to the GW source.
The data set S consists of N separate astrometric

measurements of M stars. The different stars (and mea-
surements) are indexed by I (and J). The observations are
made at times tJ (for simplicity the tJ are assumed to be the
same for all stars);

S ¼ fs⃗I;JjI ¼ 1; 2;…;M; J ¼ 1; 2;…; Ng: ð4Þ

FIG. 1. Orthographic projection of the Northern hemisphere
with 103 stars. A GW from the north pole (black dot) causes stars
to oscillate at the GW frequency. The black (red) lines show
movement tracks for a linearly plus (cross) polarized GW. For
clarity, the GW has an unphysically large strain amplitude of
A ¼ 0.1. The fourfold rotational symmetry of the transverse-
traceless GWs is clearly imprinted on the sky.
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Gravitational waves (GWs) cause the apparent position of distant stars to oscillate with a characteristic
pattern on the sky.Astrometricmeasurements (e.g., thosemade byGaia) provide a newway to search forGWs.
The main difficulty facing such a search is the large size of the data set; Gaia observes more than one billion
stars. In this Letter the problem of searching for GWs from individually resolvable supermassive black hole
binaries using astrometry is addressed for the first time; it is demonstrated how the data set can be compressed
by a factor of more than 106, with a loss of sensitivity of less than 1%. This techniquewas successfully used to
recover artificially injected GW signals from mock Gaia data and to assess the GW sensitivity of Gaia.
Throughout the Letter the complementarity of Gaia and pulsar timing searches for GWs is highlighted.
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Introduction.—The first detection of gravitational waves
(GWs) frommerging black holes has recently been achieved
by LIGO [1]. LIGO can detect binaries with total masses
≲160 M⊙ [2]; however, more massive supermassive black
hole binaries radiate at lower frequencies, inaccessible to
ground-based instruments. Observing GWs from these
massive systems would shed light on the black hole mass
function and the coalescence process of the host galaxies
and is a target for current and future searches. The planned
space-based detector LISAwill detect merging binary black
holes in the mass range ð105–107Þ M⊙ out to redshifts z≲
20 [3]. Pulsar timing arrays (PTAs) use the precise timing of
millisecond pulsars to search for GWs with frequencies
10−9 ≲ f=Hz≲ 10−7. Such GWs may be generated in the
early inspiral of a binary in the mass range ð107–1010Þ M⊙.
A GW passing over the Earth-pulsar system induces a
Doppler shift which affects the pulse arrival times at Earth.
Bymaking a number of time-of-arrival measurements over a
time span T PTAs achieve sensitivity to GWs with frequen-
cies 1=T ≲ f [4]. Current PTAs include NANOGrav [5],
EPTA [6], PPTA [7], and the combined IPTA [8].
It is also possible to detect GWs using astrometry [9–11].

The passage of a GW over the Earth-star system changes
the apparent position of the star. By making repeated
astrometric measurements of many objects and recording
their changing positions it is possible to turn an astrometric
data set into a nHz GWobservatory. The ESA mission Gaia
[12] is providing an all-sky astrometric map of > 109 stars.
Gaia will operate for 5–10 years, making ∼80 observations
(in 5 years) per source, delivering proper motion accuracy
of 20 μ as yr−1 at magnitude 15, degrading to 300 μ as yr−1

at magnitude 20.7.

The sensitivity bandwidth of Gaia is set by the meas-
urement timings (similar to PTAs); Gaia is sensitive to
1=T ≲ f. Gaia and PTAs can search for monochromatic
GWs from resolvable circular binaries, stochastic back-
grounds of GWs from the superposition of many binaries
(or from cosmic string networks [13] or early universe
perturbations [14]), or GW bursts with memory [15,16].
The astrometric analysis of a nearly monochromatic GW is
considered here, for example, from a supermassive black
hole binary in the early inspiral stage of its evolution.
The astrometric response to GWs.—Astrometric mea-

surements of distant objects may be used to detect GWs;
the term “star” is used to refer to any such object. It is
assumed that the necessary corrections for Gaia’s orbital
motion have been made, and the term “Earth” is used to
refer to an idealized stationary observer.
The possibility of detecting GWs via astrometry was

first suggested in Ref. [9]; the astrometric deflection of a
distant star was derived in Ref. [10] (also see Ref. [11])
and is summarized here. The Earth and star are assumed to
be at rest in flat space. The coordinate components of the
photon’s four-momentum are not directly observable;
instead an observer on Earth measures the tetrad compo-
nents of the photon’s four-momentum and from these is
able to deduce the star’s astrometric position (the unit
vector n⃗), and the frequency of the starlight.
A plane monochromatic GW from the direction of the

unit vector (When working with astrometry it is natural to
define the sky position of the GW source, q⃗; this differs
from the usual PTA convention where the GW propagation
direction, Ω⃗ ¼ −q⃗, is used.) q⃗ has metric perturbation
hμν ¼ ℜfHμν expðikρxρÞg, where Hμν are small complex
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Very distinctive pattern of stellar motions, 
unlikely to be imitated by systematic effects.

Shaking The Sky



LIGO

Fig. 1 µAres sky-averaged sensitivity curve (thick black curve; dashed: instrument only; solid: including
astrophysical foregrounds), compared to LISA (thin solid black curve) and SKA (solid black line at the
top left). Sources in the SKA portion of the figure include individual signals from a population of MBHBs
(pale violet), resulting in an unresolved GWB (jagged blue line) on top of which the loudest sources can
be individually resolved (dark blue triangles). The vast diversity of µAres sources is described by the
labels in the figure. For all Galactic sources (including DWDs, BHBs, and objects orbiting SgrA∗), the
frequency drift during the observing time has been assumed to be negligible. We thus plot h

√
n, where

n is the number of cycles completed over the mission lifetime, assumed to be 10 years. In this case, the
signal-to-noise ratio (SNR) of the source is given by the height of its marker over the sensitivity curve.
Extragalactic sources (including BHBs, MBHBs, EMRIs, and IMRIs) generally drift in frequency over the
observation time. We thus plot the standard hc = h(f 2/ḟ ). In this case, the SNR of the source is given
by the area enclosed in between the source track and the sensitivity curve. In both cases, when multiple
harmonics are present, SNR summation in quadrature applies

offering as a potential bonus a deeper view onto extreme mass ratio inspirals (EMRIs)
and stellar-origin BHBs.

We now enumerate the observational potential of this design, separating sources in
Galactic, and extragalactic, proceeding in order of increasing ‘cosmological distance’
to the observer. When population models for specific sources are available, we list
expected detection numbers, whereas for more speculative sources we highlight the
reach of the detector.
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Accessible?

Sirens:	Constant,	mono-chromatic	
sinusoid;	prime	example	is	SMBH-
SMBH	slow	inspiral over	years

Transients:	Final	SMBH-SMBH	
merger,	or	peri-Astron	close	
encounter

Stochastic:	Overlap	of	many,	many	
small	waves	from	multiple	sources

1/Day
1/Week

1/Month
1/Year



A question for all you assembled genii:

Is	there	a	quantum-advantaged	way	of	measuring	the	
relative/differential	radial	velocity	between	two	stars?		
If	so then	it	could	open	the	way	for	RV	GW	measurement



Summary

• Extending quantum-assisted astronomy/astrometry to large arrays 
promises many advantages: large quantum advantage, larger 
collecting areas, combined with long baselines
• One application of large, regular arrays is aperture synthesis, and also

apodization synthesis; could be a path forward for observing small,
Earth-like exoplanets
• Gravitational waves create distinct astrometric perturbations that 

could in principle be measured with precision stellar observation 


