Spectrometer based on SPAD linear array with sub-nanosecond timing resolution and single photon sensitivity for quantum-assisted optical interferometers.

CPAD 2022

11/30/2022 Stony Brook University

BNL: Andrei Nomerotski, Paul Stankus, Michael Keach, Jesse Crawford, Raphael Abrahao, Brianna Farella, Matthew Chekhlov, Julian Martinez-Rincon

Czech TU: Jakub Jirsa, Sergei Kulkov, Michal Marcisovski

EPFL: Edoardo Charbon, Claudio Bruschini, Ermanno Bernasconi, Samuel Burri

Astronomy picture of the decade

Black hole in the center of M87 imaged at 1.3mm

Achieved by radio interferometry with ~10000 km baselines

Can literally record entire waveform, over some band, separately at each receiver station and interfere later offline $\bar{n} \ll 1$ Optical

One photon at a time! Need to bring paths to common point in real time

Need path length *compensated* to better than *c*/bandwidth

Need path length *stabilized* to better than λ

Accuracy ~ 1 mas Max baselines to ~ 100 m

Two-photon techniques

Quantum Astrometry

DOE QuantISED project

- Measure photon phase difference teleporting it to another station, similar to quantum repeaters in quantum networks
- Enables long baselines and could improve astrometrical precision by orders of magnitude
- Great impact on astrophysics and cosmology
- Photons must be indistinguishable to interfere \rightarrow

indistinguishable means: $\Delta E * \Delta t \sim h/2\pi$

requires detectors with excellent time & spectral binning

 $\Delta E * \Delta t \sim 0.1$ nm * 10ps

DOE QuantISED project

www.quantastro.bnl.gov

P.Stankus et al, arxiv:2010.09100 A.Nomerotski et al, arxiv:2012.02812, SPIE Proceedings Y Zhang et al, Phys Rev A 101 (5), 053808 (2020) P Svihra et al, Appl. Phys. Lett. **117**, 044001 (2020) A.Nomerotski et al, arxiv: 2107.09229, TIPP Proceedings

relative phase difference $\delta_1 - \delta_2$ can be extracted from the coincidence rates of four single photon counters: c, d, g and h

2022: benchtop verification

Phase dependence

- Stable setup
- See expected behavior
- Time resolution ~ 100 ps

HBT peaks with SNSPDs

Visibility and phase

- All as expected
- Paper in preparation

Next step: spectral binning

Spectral binning

Two beams → diffraction grating Based on intensified Tpx3Cam, ns time resolution

spectral resolution for Ar lines ~0.15 nm

A.Nomerotski et al. Intensified Tpx3Cam, a fast data-driven optical camera with nanosecond timing resolution for single photon detection in quantum applications, arxiv.org/abs/2210.13713, accepted to JINST

SPDC source in spectrometer

- 810 nm idler and signal
- no filter

λ_{Signal} (nm)

Adding SPDC instead of one lamp

- As in original GJC2012 paper
- one Ar lamp + Thorlabs SPDC source
- Thorlabs source 1 MHz, 810 nm
- Spectral analysis of idler will post-select wavelength of signal photon

LinoSPAD2 linear SPAD array

- 512 x 1 pixels
- 24 x 24 micron pixels
- Max PDE (with microlenses) ~ 30%
- Fill factor ~ 40%
- DCR ~ 30 Hz /pix @ room T
- Deadtime ~ 100ns
- Asynchronous readout of pixels

Close-up of SPADs

Developed by AQUA group in EPFL (Switzerland) E.Charbon et al

Spectrometer with LinoSPAD2 (1)

Used Ar lamp coupled to SM fiber

Spectrometer with LinoSPAD2 (2)

Achieved 0.1 nm spectral and 50 ps timing resolution Next: demonstrate HBT peaks (photon bunching) for spectral binning

On-sky measurements

- Experimenting with SM fiber coupling
- Trying adaptive optics

0 0 0

Summary and outlook

- Demonstrated the idea of quantum telescopes on the bench, closing in on required instrument parameters
- Collaborative effort: BNL, SBU, U Oregon, U Illinois, SCSU, EPFL, Czech TU, NRC Ottawa
- Quantum Telescopes: one day workshop in June 2023
 - Companion meeting at Quantum 2.0 in Denver CO
- Next: sky observations, demonstration of the original idea with stars
- To be sensitive to faint sources
 - Need high intensity entangled photon sources
 - Need quantum repeaters and memories

Synergy with quantum internet roadmap

P.Stankus et al, arxiv:2010.09100 A.Nomerotski et al, arxiv:2012.02812, SPIE Proceedings Y Zhang et al, Phys Rev A 101 (5), 053808 (2020) P Svihra et al, Appl. Phys. Lett. **117**, 044001 (2020) A.Nomerotski et al, arxiv: 2107.09229, TIPP Proceedings