Quantum-Assisted Optical Interferometry for Astrometry and Precision Imaging

Paul Stankus, BNL

with Andrei Nomerotski, Stephen Vintskevich, Anze Slosar, Eden Figueroa, Zhi Chen, Jonathan Schiff, Jesse Crawford, Denis Dolzhenko, Rom Simovitch, Michael Keach, Steve Bellavia

> Quantum 2.0 Conference & Exhibition Boston, 6/13/2022

 $\langle BNL | \hat{a}^{\dagger} | QIST \rangle$

Interferometry: Imaging and Astrometry

High-resolution imaging is the most well-known use for long-baseline interferometry.

> Interferometry can also be used for *precision astrometry*, measurement of the positions of objects ⁿ on the sky

MIZAR A

of the positions of objects FIG. 11.—Apparent interferometric orbit of Mizar A with NPOI measurements. The dotted line is the orbit published by H95 based on Mark III observations, which did not cover the northwest quadrant.

Originally: Gottesman, Jennewein, Croke 2012 Demonstrated: Oregon & Illinois 2022

Idea 0

Matthew Brown, Valerian Thiel, Markus Allgaier, Michael Raymer, Brian Smith, Paul Kwiat, and John Monnier "Long-baseline interferometry using single photon states as a non-local oscillator", Proc. SPIE 12015, Quantum Computing, Communication, and Simulation II, 120150E (1 March 2022);

Idea 1: Use two sky photons

arXiv.org > astro-ph > arXiv:2010.09100

Astrophysics > Instrumentation and Methods for Astrophysics

[Submitted on 18 Oct 2020 (v1), last revised 4 Nov 2020 (this version, v2)]

Two-photon amplitude interferometry for precision astrometry

Paul Stankus, Andrei Nomerotski, Anže Slosar, Stephen Vintskevich

Sensitive to *difference* in path length differences **pening angle**!

Basis for precision astrometry; could achieve ~10microarcsec for bright objects

Does *not* require live optical link between stations; can use arbitrary baseline, similar advantage as HBT. *Does* require coincidence of sky photons, similar drawback as HBT

Idea 1: Use two sky photons

arXiv.org > astro-ph > arXiv:2010.09100

Astrophysics > Instrumentation and Methods for Astrophysics

[Submitted on 18 Oct 2020 (v1), last revised 4 Nov 2020 (this version, v2)]

Two-photon amplitude interferometry for precision astrometry

Paul Stankus, Andrei Nomerotski, Anže Slosar, Stephen Vintskevich

See "Astrometry in two-photon interferometry using Earth rotation fringe scan" Zhi Chen, et.al. https://arxiv.org/abs/2205.09091

Bench analog

Unpolarized

Polarized – V V

1&3

2&3

Polarized – V H

Idea 2: "Switched" config for astrometry

Does *not* require a coincidence from two sky objects; great improvement for faint sources.

Stable against (slow) ground path changes.

Quantum Advantage! Each coincidence between *i* and *j* reflects interferometric visibility on baseline $\vec{B}_i - \vec{B}_j$; achieve an *N*-aperture interferometer with only *N* beam combiners, rather than $O(N^2)$ that would be required classically.

Shopping list

- Field-deployable single photon detectors with ~nanosecond resolution
- Arrays of nanosecond SPD's with spectrographic separation
- Telescopes able to focus stably into single mode (e.g. SM fiber)
- High-rate source of energy-entangled photon pairs

Not a dream but realistic IMO: everything either available now or can be soon.

We can build an on-sky experiment with demonstrated quantum advantage for astronomy in the next few years.

Testing point source to fiber coupling through small telescope in the lab. Next step: outdoors.

Spectrographic fast pixels

Single-mode fiber-fed twin spectrograph onto fast Si pixel array camera (256x256, ~nsec)

Impacts for cosmology and astrophysics

Qualitatively better astrometric precision can yield:

- Improved parallax-based distance measurements; H_0 tension
- Mapping orbits of binaries; independent distance measurements
- Improved proper motions, relevant to galactic dark matter
- Astrometry and imaging on faint objects:
- Parallax with galaxies
- Microlensing in real time

And more:

- Gravitational wave detection through coherent stellar motion
- Exoplanet spectra through precision nulling

Summary

- Long-baseline, high-resolution optical interferometry has great scientific -- and possibly also commercial? – value
- Long baseline inteferometers can gain *quantum advantage* from

 single photon generation, (ii) long-distance entanglement
 preparation/teleportation, (iii) quantum memory storage
- Two-photon technique of GJC now extended to use two sky photons for quantum-assisted *astrometry* science application; bench demonstrations shown, on sky soon
- Very promising development path immediately ahead: switching, energy entangled pairs, W state distribution, very large arrays

BNL effort supported by DOE HEP QuantiSED grant; see our work at https://www.quantastro.bnl.gov

HBT with two, separated sources

