Imaging and time-stamping single photons with nanosecond resolution for quantum applications

Andrei Nomerotski, Brookhaven National Laboratory

AQUA lab Users Meeting

21 March 2022

Will talk about

• Fast, data driven approach to optical imaging

- Quantum applications
- Quantum assisted telescopes

Timepix Optical Cameras

Hybrid pixel detectors

Have roots in R&D for LEP/LHC vertex detectors

Lukas Tlustos and Erik H. M. Heijne, Performance and limitations of high granularity single photon processing X-ray imaging detectors, in CERN proceedings (2005)

- Decouple readout chip and sensor
- Optimize technologies for chip and sensor separately

Use different sensors with same readout, versatile approach for x-rays (Si, CZT) \rightarrow we will use OPTICAL sensors

Thin window optical sensors

Developed at BNL, first produced at CNM (Barcelona, Spain) in 2015 Surface preparation is very important, inspired by astronomical CCDs (LSST)

Timepix3 Camera → Tpx3Cam

Camera = sensor + ASIC + readout

Timepix3 ASIC:

- 256 x 256 array, 55 x 55 micron pixel
 14 mm x 14 mm active area
- 1.56 ns timing resolution
- Data-driven readout, 600 e min threshold, 80 Mpix/sec, no deadtime
- each pixel measures time and flux,
 ~1µs pixel deadtime when hit

T. Poikela et al, Timepix3: a 65k channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout, Journal of Instrumentation 9 (05) (2014) C05013.

Sensor is bump-bonded to chip

Use existing x-ray readouts: SPIDR (Nikhef & ASI) www.amscins.com

Zhao et al, Coincidence velocity map imaging using Tpx3Cam, a time stamping optical camera with 1.5 ns timing resolution, Review of Scientific Instruments 88 (11) (2017) 113104.

Use existing readouts of x-ray detectors:

TPX3Cam @ ASI

SPIDR readout for Timepix3 (Nikhef, ASI)

J. Visser et al, SPIDR: a readout system for Medipix3 and Timepix3, Journal of Instrumentation 10 (12) (2015) C12028.

eX readout for Timepix2 (Imatek)

Applications & Results

- Quantum imaging
- High Energy Physics applications
- Neutron imaging
- Lifetime imaging

Single (optical) photons

Intensified camera: use off-the-shelf image intensifier

Intensified cameras are common: iCCD iCMOS cameras

Image intensifier (Photonis PP0360EG)

Choice of photocathodes

Photonis photocathodes

Single Photons in Tpx3Cam

1 ms slice of data 1.5 ns time-stamping

Tpx3Cam + intensifier by Photonis data taken by J. Long (ASI)

Each photon is a cluster of pixels \rightarrow 3D (x,y,t) centoiding

Spatial resolution: 0.1 pixel / photon

Time resolution: < 1 ns / photon

Quantum Information Science, Quantum-Assisted Imaging for telescopes and others

Quantum Astrometry

Idea: employ quantum entanglement to improve precision of optical interferometers

Two-photon amplitude interferometry for precision astrometry Paul Stankus, Andrei Nomerotski, Anže Slosar, Stephen Vintskevich https://arxiv.org/abs/2010.09100

Astronomy picture of the decade

Black hole in the center of M87 imaged at 1.3mm

Achieved by radio interferometry with ~10000 km baselines

Can literally record entire waveform, over some band, separately at each receiver station and interfere later offline $\bar{n} \ll 1$ Optical θ

One photon at a time! Need to bring paths to common point in real time

В

Need path length *compensated* to better than *c*/bandwidth

Need path length *stabilized* to better than λ

Accuracy ~ 1 mas Max baselines to ~ 100 m

Two-photon techniques

Second photon for quantum assist

PRL 109, 070503 (2012)

PHYSICAL REVIEW LETTERS

week ending 17 AUGUST 2012

Daniel Gottesman*

Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

Thomas Jennewein[†]

Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada

Sarah Croke[‡]

Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada (Received 25 October 2011; revised manuscript received 22 May 2012; published 16 August 2012)

- Measure photon wave function phase difference performing Bell State Measurement at one station so teleporting the sky photon to the other station
- Enables long baselines and could improve astrometric precision by orders of magnitude
- Major impact on astrophysics and cosmology

Quantum Astrometry

Idea: use another star as source of entangled states for the interference

- Relative path phase difference $\delta_1 \delta_2$ can be extracted from the coincidence rates of four single photon counters: c, d, g and f
- Can provide 10 microarcsec resolution for bright stars
- Perfect to start exploring this approach

Requirements for detectors

- Photons must be close enough in frequency and time to interfere → temporal & spectral binning: need ~ 0.01 ns * 0.2 nm for 800 nm
- Fast imaging techniques are the key
 - Several promising technologies: CMOS pixels+MCP, SPADs, SNSPDs, streaking
 - Target 1-100 ps resolution
- Spectral binning: diffraction gratings, Echelle spectrometers
- Photon detection efficiency: high

Spectroscopic binning

In collaboration with NRC (Ottawa) D.England, Y.Zhang et al

Pump photon wavelength vs time difference

I, Multidimensional mporal-correlation P Svihra et al, Multivariate Discrimination in Quantum Target Detection, Appl. Phys. Lett. **117**, 044001 (2020)

Y Zhang, D England, A Nomerotski, P Svihra et al, Multidimensional quantum-enhanced target detection via spectrotemporal-correlation measurements, Physical Review A 101 (5), 053808

Experiments in progress

Strong HBT peak with single lamp

Bench-top model of two-photon interferometry

Ar vapor lamps with ultra-narrow band filters Superconducting nanowire single-photon detectors

Supported by DOE HEP QuantISED program

Current setup at BNL: SPDC source as spectrometer characterization tool

Argon lamp spectrum

0.2 nm resolution

794.8 nm line

HBT peak with 5 ns resolution? no

Next steps: spectrometer based on LinoSPAD2

Two diffracted photon stripes projected on to single linear array

Spectrometer time resolution: ns \rightarrow 100 ps

More Quantum Imaging

Hong-Ou-Mandel effect

- 1) HOM dip for coincidences of two fibers
- 2) Bunched photons in single fibers

HOM Setup

Examples of bunched HOM photons

Hong-Ou-Mandel effect

$$f(d - d_0) = \frac{3}{4\sqrt{\pi}} \int dy \, [\operatorname{sinc} \left(y^2\right)]^2 \, e^{-iy \frac{\sqrt{4\log 2}(d - d_0)}{FWHM}}$$

A. Nomerotski, M. Keach, P. Stankus, P. Svihra, and S. Vintskevich, "Counting of hong-ou-mandel bunched optical photons using a fast pixel camera," arXiv:2005.07982 (2020).

HOM effect with post-selection

In collaboration with NRC (Ottawa) D.England, Y.Zhang et al

2 nm filters at 805 nm and 817 nm.

More quantum imaging

Imaging of trapped ions

Time resolved qubit manipulation (Blinov group, UWash)

Register 493 nm photons to probe dark/bright state of ion = state of qubit register

Fast Simultaneous Detection of Trapped Ion Qubit Register with Low Crosstalk, M.Zhukas, P.Svihra, A.Nomerotski, B.Blinov, arxiv.org/abs/2006.12801

Qubit detection error

Fast Simultaneous Detection of Trapped Ion Qubit Register with Low Crosstalk, M.Zhukas, P.Svihra, A.Nomerotski, B.Blinov, arxiv.org/abs/2006.12801

single qubit detection error: ~ 5 ppm

- Emission rate oscillations due to Doppler shift of laser light wrt moving ion
- Simultaneous time & position information allows to monitor ion micro-motions
- Powerful technique to characterize traps

Direct observation of ion micromotion in a linear Paul trap,

L.Zhukas, M.Millican, P. Svihra, A. Nomerotski, B.Blinov, https://arxiv.org/abs/2010.00159, Phys. Rev. A **103**, 023105 (2021).

Ion micromotion

- Emission rate oscillations due to Doppler shift of laser light wrt moving ion
- Simultaneous time & position information allows to monitor ion micro-motions
 - Period 54 ns
 - Amplitude 0.4 micron

Direct Observation of Ion Micromotion in a Linear Paul Trap Liudmila A. Zhukas, Maverick J. Millican, Peter Svihra, Andrei Nomerotski, Boris B. Blinov, arxiv: 2010.00159 Phys. Rev. A **103**, 023105 (2021).

Ion micromotion in 2D

A.Kato et al, Two-tone Doppler cooling of radial two-dimensional crystals in a radiofrequency ion trap, arxiv.org/abs/2111.05829; Phys. Rev. A **105**, 023101

HEP applications

TPX3Cam on ARIADNE 1-ton dual phase Liquid argon TPC

Image light from avalanches in gas phase in THGEM

hep.ph.liv.ac.uk/ariadne/index.html Kostas Mavrokoridis et al

D. Hollywood et al, 2020 ARIADNE—A novel optical LArTPC: technical design report and initial characterisation using a secondary beam from the CERN PS and cosmic muons *JINST* **15** P03003

A. Roberts et al., 2019 First demonstration of 3D optical readout of a TPC using a single photon sensitive Timepix3 based camera *JINST* **14** P06001

5.5 MeV alphas in CF₄ gas in Tpx3Cam

Color = TOA

Color = TOT

First demonstration of 3D optical readout of a TPC using a single photon sensitive Timepix3 based camera, A Roberts, P Svihra, A Al-Refaie, H Graafsma, J Küpper, K Majumdar, ... K. Mavrokoridis, A.Nomerotski ... Journal of Instrumentation 14 (06), P06001 (2019)

More ideas

- Scintillator flashes are imaged by intensified Tpx3Cam
- Alphas, hard x-rays, neutrons, ...

Advantage: outside of the beam, around the corner (with mirrors)

Alphas in LYSO in Tpx3Cam

Novel imaging technique for α-particles using a fastoptical cameraG. D'Amen et al 2021 JINST 16 P02006

Neutron detection with Tpx3Cam

- ⁶Li-based scintillator
- Neutrons produce alphas
- Time resolved

A.Losko et al, DOI:10.21203/rs.3.rs-257513/v1

J.Yang et al, arxiv.org/abs/2102.13386

Tpx3Cam neutron event display

Material characterization with Bragg edges

Future directions

Timepix3 → Timepix4

by Medipix4 collaboration

X. Llopart

		Timepix3	Timepix4
Technology		IBM 130nm	TSMC 65nm
Pixel Size		55 x 55 μm	≤ 55 x 55 μm
Pixel arrangement		3-side buttable	4-side buttable
		256 x 256	256 x 256 or bigger
Operating Modes	Data driven	PC (10-bit) and TOT (14-bit)	CRW: PC and iTOT (1216-bit)
	Frame based	TOT and TOA	
Zero-Suppressed	Data driven	< 80 MHits/s	< 500 MHits/s
Readout	Frame based	YES	YES
TOT energy resolution		< 2KeV	< 1Kev
Time resolution		1.56ns	~200ps

WISH LIST:

- ASIC with optimized timing for clusters and with triggering capabilities,
- Readout with several 10 ps TDCs in synch with Tpx

Single Photon Sensitivity without intensifier?

- So far needed outside amplification (MCP) to have a detectable signal
- Limitation: QE ~ 35% (for 800nm)

Single Photon Sensitivity without intensifier?

 Can the amplification be integrated into the sensor? Silicon QE can be >90%

SPADs

 Currently PDE (photon detection eff) ~30-50% but there is no fundamental limit. High PDE is crucial for some QIS applications

Summary

• Time stamping of optical photons with data-driven readout is attractive alternative to frame readout

Works well for sparse data Needs intelligent pixels with complex functionality

- Timing resolution: 10 nsec \rightarrow 0.1 nsec
- Photon sensitivity: 1000 photons \rightarrow single photon
- New technologies for fast single photon detection → hot topic in quantum applications

Eden Figueroa Paul Stankus Tom Tsang Justine Haupt Mael Flament **Guodong Cui** Sonali Gera **Dimitros Katramatos** Michael O'Connor Gabriella Carini Anand Kandasamy Michael Keach Steven Paci Alex Parsells Jonathan Schiff Denis Dolzhenko Stepan Vintskevich Anze Slosar Zhi Chen Jesse Crawford **Rom Simovitch**

Jingming Long Martin van Beuzekom Bram Bouwens Erik Maddox Jord Prangsma Duncan England Yingwen Zhang Boris Blinov Mila Zhukas Maverick Millican Alex Kato

Peter Svihra Michal Marcisovsky

Acknowledgements

Photon absorption in silicon

- Blue photons are absorbed near the surface (~0.25 um for 430 nm, P47 max emission)
- ~1 um for 500 nm, ~10 um for 800 nm

WAVELENGTH (nm)

Ion Imaging

A. Zhao, M. van Beuzekom, B. Bouwens, D. Byelov, I. Chakaberia, Ch. Cheng, E. Maddox, A. Nomerotski, P. Svihra, J. Visser, V. Vrba and T. Weinacht: 'Coincidence velocity map imaging using Tpx3Cam, a time stamping optical camera with 1.5 ns timing resolution'. Rev Sci Instrum. 88(11), 10.1063/1.4996888 (2017)

Ions in TimepixCam

 M. Fisher-Levine, R. Boll, F. Ziaee, C. Bomme, B. Erk, D. Rompotis, T. Marchenko, A. Nomerotski and D. Rolles: *"Time-Resolved Ion Imaging at Free-Electron Lasers Using TimepixCam"*. Journal of Synchrotron Radiation.(2018) 25 https://doi.org/10.1107/S16005775170

 M. Fisher-Levine, R. Boll, F. Ziaee, C. Bomme, B. Erk, D. Rompotis, T. Marchenko, A. Nomerotski and D. Rolles: *"Time-Resolved Ion Imaging at Free-Electron Lasers Using TimepixCam"*. Journal of Synchrotron Radiation.(2018) 25 https://doi.org/10.1107/S16005775170

Quantum Network

- Attenuation in fibers → need quantum repeater to reproduce qubits
 Simple amplification will not conserve the quantum state
- Qubit teleportation: produce entangled photons and send them to two locations
- Bell State Measurement (BSM) on one photon will collapse the wave function of the other one (or swap entanglement, or teleport photon)

SBU BNL Quantum repeater test bed

Characterization of Single Photon Down-Conversion Source

- Find coincidences, plot as function of two polarizations
- Figure of merit: S-value
 - If > 2: photons are entangled
 - max value: $2\sqrt{2} = 2.82$
- Measurement:
 S-value = 2.72±0.02

Time resolution: 2ns

Spatial characterization of entanglement

Christopher Ianzano, Peter Svihra, Mael Flament, Andrew Hardy, Guodong Cui, Andrei Nomerotski & Eden Figueroa ⊡

Scientific Reports 10, Article number: 6181 (2020) Cite this article

Imaging enables scalability

2.6

2.5

2.4

2.3

2.2

2.1

Scalability

Tpx3Cam supports 10MHz single photon rate :

= 10 x 10 x 100kHz beams

Photon router:

- Used acoustooptical modulators to create 8x8 grid
- Arbitrary routing between spots
- 10 ns time resolution, 1 μs switching

Scalability

Goal: storage of multiple qubits in single ⁸⁷Rb cell

Hanbury Brown – Twiss Interferometry

HBT with two sources?

Possible impact on astrophysics and cosmology

https://arxiv.org/abs/2010.09100

offers orders of magnitude better astrometry with major impact

- Parallax: improved distance ladder (DE)
- Proper star motions (DM)
- Microlensing, see shape changes (DM)
- Black hole imaging
- Gravitational waves, coherent motions of stars
- Exoplanets

Lifetime Imaging

Lifetime imaging with ns timing

L. M. Hirvonen, M. Fisher-Levine, K. Suhling, and A. Nomerotski: 'Photon counting phosphorescence lifetime imaging with TimepixCam'. Rev. Sci. Instrum. 88, 013104 (2017).

Lifetime imaging with oxygen sensors

Sensor lifetime depends on oxygen concentration \rightarrow in-vivo monitoring of oxygen in tissues

Papkovski group, University College Cork (Ireland)

Oxygenation and Deoxygenation of PtBp Solid State sensors

New luminescence lifetime macro-imager based on a Tpx3Cam optical camera, R Sen et al, Biomedical optics express 11 (1), 77-88 (2020)

Measurements with biosamples

Intraluminal application (Mice2)

Large Intestine

Small Intestine

Papkovski group, University College Cork (Ireland)

Mapping O_2 concentration in ex-vivo tissue samples on a fast PLIM macro-imager, R Sen et al, Scientific reports 10 (1), 1-11 (2020)

Single photon imagers for NIR

HgCdTe sensors with avalanche amplification

- developed for astronomers to study the black hole in our Galaxy

320x256 diode array, Saphira readout ASIC

- pure electron amplification
- "noiseless" gain > 1000
- sub-e noise @ 5 MHz, QE ~= 80%
- suitable for telecom wavelength 1660 nm
- single photon counting
- Compatible with fast timing

Baltimore SDW 2017 Gert Finger