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Advances in modern quantum sensing and quantum computing are expected to provide excellent 
opportunities for high energy physics. We describe below BNL QuantISED program, which started 
in 2019 and has been renewed in 2021. The topics are listed below along with their BNL POCs. 
 

Quantum-assisted optical interferometers: PI Andrei Nomerotski (BNL), co-PIs: Paul Stankus 
(BNL), Ning Bao (BNL) 

This QuantISED project is expected to provide major improvements in astrometric 
precision of optical telescopes. Photon phase difference in two locations is measured employing 
sources of entangled photons and teleportation techniques. This enables long baselines and 
improves astrometric precision by few orders of magnitude with major impact on several Cosmic 
Frontier research areas. The approach can be generalized from the entanglement of photon pairs 
to multipartite entanglement in multiple stations to explore different configurations and to guide 
future experimental developments. In addition to the capability to generate and distribute 
entangled photons over long distances, practical schemes under investigation require photon 
detectors with excellent temporal and spectral resolutions. Our goal is to develop a small-scale 
on-sky experiment with HEP scope by 2024. This project leverages BNL efforts in quantum 
networking research and would be one of its first science applications. The project web site with 
first results and publications can be accessed at https://www.quantastro.bnl.gov . 
 

Quantum-accelerated artificial intelligence: PI Shinjae Yoo (BNL), co-PIs Chao Zhang (BNL), Yen-
Chi (Sam) Chen (BNL), Tzu-Chieh Wei (Stony Brook University), Sau Lan Wu (University of 
Wisconsin)  

This QuantISED project is investigating the advantages of using Quantum Machine 
Learning for data-intensive HEP applications, where we are developing new quantum-enhanced 
deep learning methods. The project is targeting the future long baseline neutrino oscillation 
experiment DUNE data and also the LHC data for the quantum-accelerated event classification 
and particles trajectories fitting. Early results, which employ the quantum convolutional neural 
network (QCNN), quantum graph convolutional neural network (QGCNN), and quantum long 
short-term memory (QLSTM), have shown a similar performance or quantum advantage in terms 
of convergence speed and accuracy for key tasks, in comparison to current solutions using 
classical computing methods. Specifically, we plan to apply hybrid quantum-classical approach to 
demonstrate quantum generative adversarial network and quantum autoencoder on both DUNE 
and LHC applications. To further improve our representation, we plan to investigate quantum 
tensor network and quantum metric learning. Our metaQuantum software framework for 
quantum machine learning significantly improved our productivities in simulation and real 
quantum computer experiment and we plan to improve further by enabling AutoML capabilities 
(automatic hyperparameter tuning and automated quantum architecture search). 
 

 

https://www.quantastro.bnl.gov/


Supporting materials for Quantum-assisted optical interferometers 
 

Basic arrangement of the novel interferometer is the 
following: the photon modes a and b at station L are brought 
to the inputs of a symmetric beam splitter, with output 
modes labelled c and d; and the same for input modes e and 
f split onto output modes g and h at station R. The four 
outputs are then each viewed by a fast, single-photon 
sensitive detector. If the two photons are close enough 
together in both time and frequency, then due to quantum 
mechanical interference the pattern of coincidences 
between measurements at “c” and “d” in L and “g” and “h” 
in R will be sensitive to the difference in phase differences 
(δ1 − δ2); and this in turn will be sensitive to the opening 

angle between the two sources.  

We started bench-top experiments of two-photon 
interferometry employing thermal 794 nm photons emitted 
by a narrow spectral line of argon vapor. The photons are 
registered with superconducting nanowire single-photon 
detectors and single-photon avalanche detectors. See 
example of the Henry Brown – Twiss peak fit with a 
Lorentzian function with decay time of 135 ps convoluted 
with experimental resolution of 61 ps.  
 
We are developing new theoretical schemes for the 
proposed interferometer which use multi-partite 
entanglement (ex W or GHZ states) distributed between 
multiple stations, and quantum protocols to process 
information in noisy environment for evaluation of 
experimental observables. The shown quantum circuit 

illustrates density operators  with multi-partite 
entanglement distributed over three stations (A, B, C) and 
states registered by single-photon detectors.  
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Supporting materials for Quantum-accelerated artificial intelligence 

 
The original DUNE input data, X, is rather sparse, making it difficult for QML models to classify. 
The situation worsens when encoding the image with amplitude encoding (AE) as the vector 
normalization procedure causes significant information loss. The input X is multiplied by the 
adjacency matrix A. The results of AX and A2X shows much more smooth results for better AE. 
 

We developed hybrid quantum-
classical graph convolution 
(shown left). The proposed hybrid 
quantum-classical graph CNN 
contains three major 
components: 1) graph convolution 
2) VQC, and 3) classical post-
processing.  
 

    We compared the performance 
between different architectures in 
the task of muon versus proton 
binary classification. QGCNN and 
QCNN demonstrates superior 

performance (higher accuracy and converge faster) than classical MLP and CNN models (shown 
below). QGCNN is much faster than GCNN on the quantum simulation. 

 
Publications: 

1. QCNN: Chen, S.Y.C.; Wei, T.C.; Zhang, C.; Yu, H.; Yoo, S. Quantum Convolutional Neural 
Networks for High Energy Physics Data Analysis. arXiv 2020, arXiv:2012.12177. 

2. QGCNN: Chen, S.Y.C.; Wei, T.C.; Zhang, C.; Yu, H.; Yoo, S. Hybrid Quantum-Classical Graph 
Convolutional Network. arXiv 2021, arXiv:2101.06189 

3. QLSTM: Chen, S.Y.C.; Yoo, S.; Fang, Y.L.L. Quantum Long Short-Term Memory. arXiv 2020, 
arXiv:2009.01783. 


