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Astronomy pictures of the day year decade

MS87*  April 11, 2017
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Radio source Cygnus A imaged at 6cm
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Center of M87 imaged at 1.3mm 2019 ApJL 875



Single Aperture: Ditfraction Limit

A single detector/pixel point will
collect intensity from a range of
angles. The limit of this angular
range is AB~A/d after which the
wavefront will interfere with itself
destructively across the aperture.
Therefore any single-aperture
telescope cannot resolve features
with angular size smaller than A1/d
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Source O

Each source 1 at sky position 6;
produces a fringe shifted by phase
amount A¢ = 2nB sin6;/A

Intensity pattern is sum over all
sources = Fourier moment!

Fringe contrast(/visibility) measures
amplitude of Fourier moment at
wavenumber k = 2nB /A
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Back on Mt. Wilson
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The Astrophysical Journal, 628:453-465 6 Path Length



How cool is this?

CHARA Collaboration, “First Resolved Images of the Eclipsing
and Interacting Binary B Lyrae”; arXiv:0808.0932, The
Astrophysical Journal, 684: L95-1L98, 2008 September 10
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Optical interferometry examples
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So tar, so classical

 EM waves interfere with themselves (single photons do same)

* Interferometer sensitive to features on angular scale AH~§
* Drawbacks in optical.-

* Need live optical link between stations

* Need path length control precision on order 1%/AA

* Atmospheric effects enter at O(1)

* Need to control polarization during transport

* Practical limit on baselines ~ 100m



One spatial mode, with extent Ax
along the ground and able to cover
an angular range of A8 on the sky

T A A

Photons ala mode

To move from classical to quantum optics we
describe the EM field in terms of modes; then
photons are excitations in one or more modes.

Two photons in different modes are independent
Two photons in the same mode can/will interfere
with each other qguantum mechanically.

A mode is a region of 6-D phase space,
3-mom X 3-spatial, with total volume of #3.

For a beam we can describe the transverse
spatial and angular extents:

n
h~Ax Ap = Ax p A8 = Ax—AO andso Ax A6 ~ A

A



The curious HBT effect

“The birth of quantum optics”
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HBT Intensity Interferometry

Telescopes A and B will detect the same mode from an object with
angular size on the sky, and so will have an elevated coincidence rate
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High ride of astro HBT, 1956-1974 ... and again now

_ Stellar intensity
~ interferometer at
Narrabri, Australia, 1968

arXiv.org > astro-ph > arXiv:1810.08023

Astrophysics > Instrumentation and Methods for Astrophysics

Intensity Interferometry revival on the Cote d'Azur

Olivier Lai, William Guerin, Farrokh Vakili, Robin Kaiser, Jean Pierre Rivet, Mathilde Fouché, Guillaume Labeyrie,
Etienne Samain, David Vernet
(Submitted on 18 Oct 2018)

No. 4, 1967  The stellar interferometer at Narrabri Observatory—II 405
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Fi1G. 3. Examples of the observed variation of correlation with baseline for three stars.
(a) B Cru (1965); (b) « Eri (1965); (c) « Car (1965).

Hanbury Brown, Davis, Allen, Rome; MNRAS 137, (1967) p393-417



HBT track record

* Advantages:
e Separate stations with only classical connection
* Arbitrary baselines, set by desired angular scale
* No path-length corrections needed
* Immune to atmospheric effects (at leading order)

 Drawbacks:

* Low rates! Need to see coincident photon pairs, only pairs with Av At < 1 will
show effect; but more & finer spectral bins will help

* Sensitive to square of image Fourier moment, washes out fine details
* Used (thus far) mainly for gross features of bright objects



HBT with two, separated sources?

Detectors

Source 1

Half
mirrors

Common
spatial mode

=

Detectors

Source 2

New idea: Coincident

pair detections now
sensitive to phases of
incoming photons

Original motivation:
gravitational waves



[dea: two photons from two sky sources

arXiv.org > astro-ph > arXiv:2010.09100

Astrophysics > Instrumentation and Methods for Astrophysics

[Submitted on 18 Oct 2020 (v1), last revised 4 Nov 2020 (this version, v2)]
Two-photon amplitude interferometry for precision astrometry

Paul Stankus, Andrei Nomerotski, AnZe Slosar, Stephen Vintskevich

Sensitive to difference in path length
differences = opening angle!

Splitter Splitter

Does not require live optical link between
stations; can use arbitrary baseline, similar

\\A /\4\‘ ‘/\4\A advantage as HBT.



Quantum mechanics (Fock state) version; quickie:

k(Sl - 52)2
8

2 2mA
1t Vars cos | 22 (sing, —singy) + 2L

(N(zy)) = :

Beam Beam
Splitter v 1 Splitter

R Quantum field theory version; full:

T

Ne(zy) = ninaA® J s
0

Tedl1 Teg22 +
T P =

Observable is the number/rate of o1 I, 7912 cos (woB(Sin91 — sin 6) N woAL) ]
.. & é c
coincidences xy = {cg,dh} or {ch,dg} d

at different stations.
(Can do many spectral bins in parallel.)

A2771’I]2T.,- [(Il -+ .[2)2 -+ Iitz -+ I22




Quantum mechanics (Fock state) version; quickie:
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Idea: Earth rotation fringe scan

2
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Can measure with high precision




World-competitive precision

6 1 A 1
AbG| =
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A modest experiment:

Bright stars, mag 2

1 m? collecting area

10% seconds observation
0.15 nsec time resolution
10% spectral channels

1

VilD)

n = average pair rate
T = total observation time

Idea: Dynamic Astrometry

Track day-over-day changes in A8 to
observe parallax, proper motion,
orbital motion, gravitational lensing

) 1 mas HIPPARCOS (1989-1993)
» O-[AH] ~ 10#&8 (N 10 11 I‘ad) 7 uas GAIA (2013-)




Astrophysics topics in dynamic astrometry

* Parallax: improved distance ladder

* Proper motions: local dark matter patterns

* Microlensing, see motions and shape changes

* Gravitational waves at mid-frequency

* Quantum applications, e.g. quantum key distribution

Further ideas are encouraged!



Quantum improved single photon interference?

week endin

PRL 109, 070503 (2012) PHYSICAL REVIEW LETTERS 17 AUGUST 3012
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Longer-Baseline Telescopes Using Quantum Repeaters

Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada

Daniel Gottesman™

Thomas Jennewein"
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Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada
(Received 25 October 2011; revised manuscript received 22 May 2012; published 16 August 2012)
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Ground photon
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Let slip the quantum technology!

PHYSICAL REVIEW LETTERS 123, 070504 (2019)

Idea: Capture and store sky
photons in quantum
memories, then teleport
E. T. Khabiboulline," J. Borregaard * K. De Greve,' and M. D. Lukin'
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and measure as needed

2QMATH Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen @, Denmark

Optical Interferometry with Quantum Networks

® (Received 17 September 2018; published 15 August 2019)
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configuration
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photon source
does not
require a
coincidence
from two sky
objects .

Great
improvement
possible for
faint sources if
photon pairs
are available.



Beam
Combiner

Beam
Combiner

Beam
Combiner

etc. etc. ...

Array of N apertures,
generally want to
measure visibility
between each pair, ie N?
observables. In standard

interferometry need N?
beam combiners.



Alternative: mix N
telescope inputs against
N-way split of a single
(ground) photon

Timing and

Wavelength
: Detector
Pair Source,
Wavelength ‘

Entangled



Sky Photon In (W state)

Single Photon In (W state)

Repeated GJC arrangement, once for each telescope and each split off the ground
single photon; cost & complexity grows linearly with array size.



Experiments in progress

Supported at BNL by DOE HEP
QuantISED grant 2020-21

Ar SNSPD
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Future detector requirement
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* Detector time resolution (wider spectroscopic
bins, more pairs per detector)

* Fast pixel array (Timepix) + dispersive
spectrograph (Echele?)

* Very fast single photon detectors — improved
SNSPD? Timing, QE, many channels = Spes

Hotspot generated

https://arxiv.org/abs/2012.02812

High current density enlarges hotspot



https://arxiv.org/abs/2012.02812

Intensitied camera is single
photon sensitive
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Quantum efficiency ~ 30%

A.Nomerotski, Imaging and time stamping of photons with nanosecond
resolution in Timepix based optical cameras, NIM A 937 (2019) 26



Spectroscopic binning already demonstrated

In collaboration with NRC (Ottawa) D.England, Y.Zhang et al

Signal photons
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measurements, Physical Review A 101 (5), 053808



Just the beginning! A broad future program

* Observations with >2 receivers and >2 objects; phase closure?
* More complicated quantum states (GHZ, etc.)
* New kinds of entanglement distribution (polarization qubits, e.g.)

* Involvement of quantum memories to enhance pair rates; local
expertise (SBU) with 8’Rb vapor room-temp QM’s

* Atmospheric effect compensation
* On-sky experiments possible soon!




Points to take home

* Classical, single-photon interferometry reaches much higher resolutions,
order milli-arcsec, than single telescopes; but practical issues limit
maximum baselines

* Two-photon interferometry can permit independent stations over longer
baselines; historical HBT is one example

* Two-photon techniques are in general quantum mechanical; new ideas
suggest quantum technology can enhance interferometry

* One specific two-photon technique addresses dynamic astrometry, which
will have interesting astrophysics applications

* There is a potentially broad program in quantum-assisted optical
interferometry ahead



