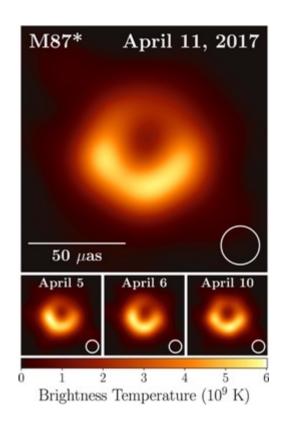
Quantum-Assisted Optical Telescopes

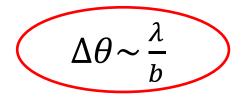
Andrei Nomerotski, Brookhaven National Lab 28 September 2021

In collaboration with: Paul Stankus, Stephen Vintskevich, Anze Slosar, Ning Bao, Zhi Chen, Jonathan Schiff, Alex Parsells, Duncan England, Yingwen Zhang et al

Sensing with Quantum Light SQL21


WE-Heraeus-Seminar, 26 Sep - 29 Sep 2021

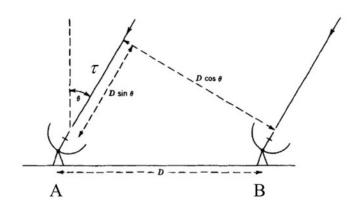
Physikzentrum Bad Honnef, Germany



Astronomy picture of the decade

53M light years away $\delta \sim 10 \mu as (\sim 10^{-11} rad)$

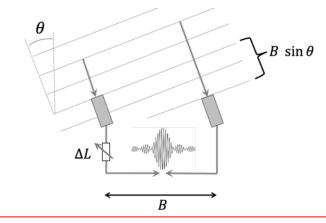
sensitive to features on angular scale


2019 ApJL 875

Black hole in the center of M87 imaged at 1.3mm

Achieved by radio interferometry with ~10000 km baselines,

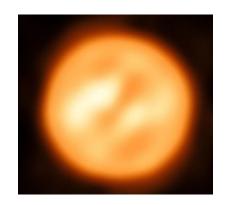
Radio


$\bar{n} \gg 1$

Can literally record entire waveform, separately at each receiver station and interfere later offline

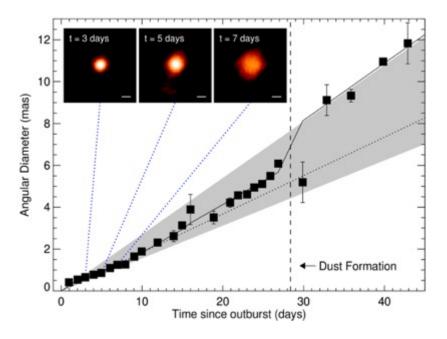
Optical

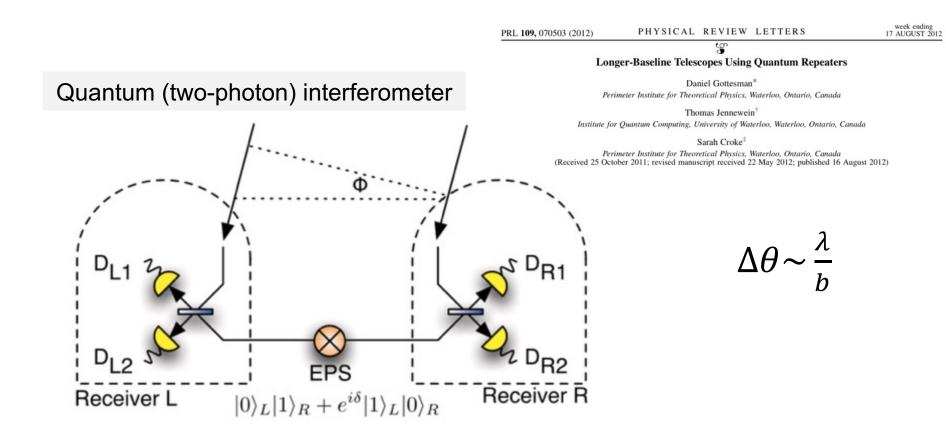
One photon at a time! Need to bring paths to common point in real time


Need path length *stabilized* to better than λ

Accuracy ~ 1 mas (milliarcsecond)

Max baselines ~ 100 m


Optical interferometry examples


Dynamic convection on **Antares** (VLTI, ESO)

CHARA Collaboration, "First Resolved Images of the Eclipsing and Interacting Binary β Lyrae"; arXiv:0808.0932, The Astrophysical Journal, 684: L95-L98.

Two-photon techniques

Quantum-assisted telescopes

 Measure photon wave function phase difference performing Bell State Measurement at one station so teleporting the sky photon to the other station

6

- Enables long baselines and could improve astrometric precision by orders of magnitude
- Observables: measure coincidence rates of four single photon counters

Possible impact on astrophysics and cosmology

https://arxiv.org/abs/2010.09100

offers orders of magnitude better astrometry with major impact

- Parallax: improved distance ladder
- Proper star motions
- Microlensing, see shape changes
- Gravitational waves, coherent motions of stars
- Exoplanets
- etc

More recent developments

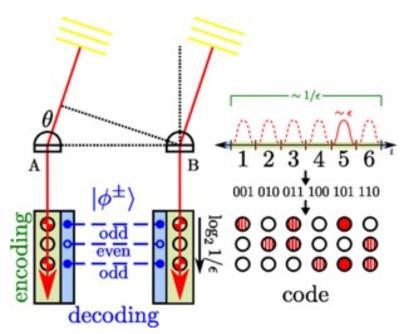
PHYSICAL REVIEW LETTERS 123, 070504 (2019)

Idea: Capture and store sky photons in quantum memories, then teleport and measure as needed

Optical Interferometry with Quantum Networks

E. T. Khabiboulline, ^{1,*} J. Borregaard, ^{1,2} K. De Greve, ¹ and M. D. Lukin ¹

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA


QMATH, Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark

(Received 17 September 2018; published 15 August 2019)

PHYSICAL REVIEW A 100, 022316 (2019)

Quantum-assisted telescope arrays

E. T. Khabiboulline , 1,* J. Borregaard, 1,2 K. De Greve, and M. D. Lukin Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA QMATH, Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark

Idea: Efficient time-bin encoding of photon arrivals

More futuristic ideas

Quantum hard drives!

Scientific American Unlimited Learn More

OPINION PUBLICATIONS

PHYSICS

Quantum Astronomy Could Create Telescopes Hundreds of Kilometers Wide

ns fr

HOME) EXTREME) ASTRONOMERS WANT TO DESIGN QUANTUM TELESCOPES THAT SPAN THE GLOBE

Astronomers hope to use innovations fr large arrays

By Anil Anar

Astronomers Want to Design Quantum Telescopes That Span the Globe

By Ryan Whitwam on April 26, 2021 at 7:30 am Comments

Quantum memories and the double-slit experiment: implications for astronomical interferometry

JOSS BLAND-HAWTHORN^{1,2,3}, MATTHEW J. SELLARS⁴, AND JOHN G. BARTHOLOMEW^{1,5,6}

¹School of Physics, University of Sydney, NSW 2006, Australia

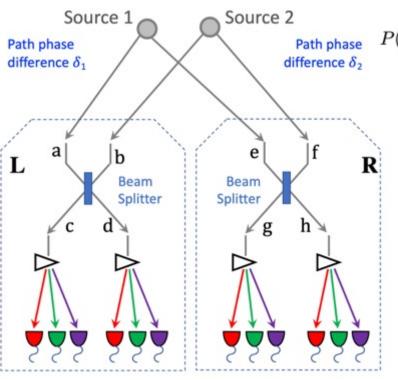
² Sydney Astrophotonic Instrumentation Labs (SAIL), School of Physics, University of Sydney, NSW 2006, Australia

³ Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006, Australia

⁴Centre for Quantum Computation and Communication Technology, Research School of Physics and Engineering, The Australian National University, Canberra 0200, Australia

⁵ Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia

⁶The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia


^{*}Corresponding author: jbh@physics.usyd.edu.au

Quantum Astrometry

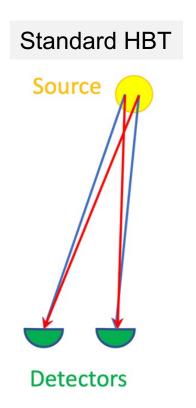
Idea: use another star as source of correlated states for the interference

Quantum Astrometry

Idea: use another star as source of correlated states for the interference

Path phase
$$P(c^2) = P(d^2) = P(g^2) = P(h^2) = 1/8$$
 Ifference δ_2
$$P(cg) = P(dh) = (1/8)(1 + \cos(\delta_1 - \delta_2))$$

$$P(ch) = P(dg) = (1/8)(1 - \cos(\delta_1 - \delta_2))$$

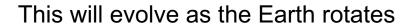

Full QFT calculation in https://arxiv.org/abs/2010.09100

$$N_{c}(xy) = \eta_{1}\eta_{2}A^{2} \int_{0}^{T_{r}} P_{L,R,\tau}^{\text{two photons}} d\tau = A^{2}\eta_{1}\eta_{2}T_{r} \left[\frac{\text{Rates}}{(I_{1} + I_{2})^{2}} + \frac{\text{HBT}}{I_{1}^{2} \frac{\tau_{c}g_{11}}{T_{r}} + I_{2}^{2} \frac{\tau_{c}g_{22}}{T_{r}}} \pm 2I_{1}I_{2} \frac{\tau_{c}g_{12}}{T_{r}} \cos \left(\frac{\omega_{0}B(\sin\theta_{1} - \sin\theta_{2})}{c} + \frac{\omega_{0}\Delta L}{c} \right) \right] (30)$$

New oscillatory term!

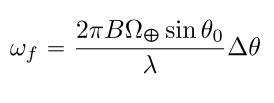
Relative path phase difference $\delta_1 - \delta_2$ can be extracted from the coincidence rates of four single photon counters: c, d, g and f

Comparison to Hanbury Brown – Twiss Intensity Interferometry


Quantum astrometry Source 1 Source 2 Half mirrors Common spatial mode **Detectors**

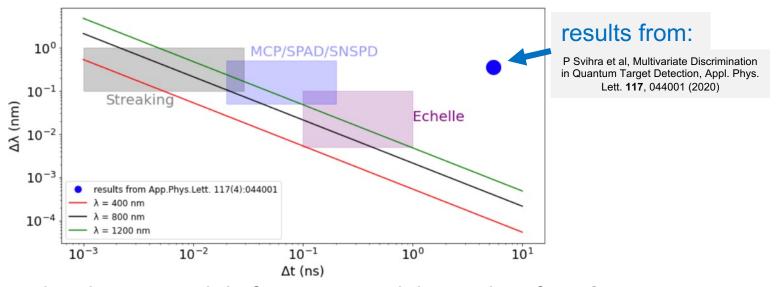
Photon bunching if path difference is within coherence time

Coincident pair detection sensitive to phase difference of two photons


Earth rotation fringe scan

$$\langle N(xy)\rangle = \frac{k(S_1 + S_2)^2}{8} \left[1 \pm V_{2PS} \cos \left[\frac{2\pi B}{\lambda} (\sin \theta_1 - \sin \theta_2) + \frac{2\pi \Delta L}{\lambda} \right] \right]$$

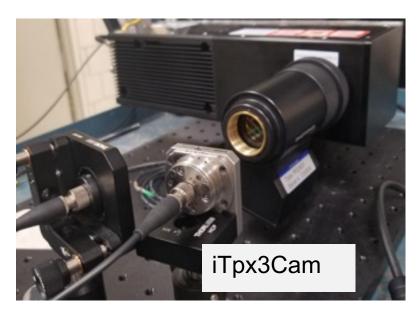
Coincidence rates oscillate

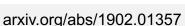

Fringe oscillation rate is a $\omega_f = \frac{2\pi B\Omega_{\oplus}\sin\theta_0}{\Omega}\Delta\theta \qquad \text{fringe oscillation rate is a direct measure of sources'}$ opening angle!

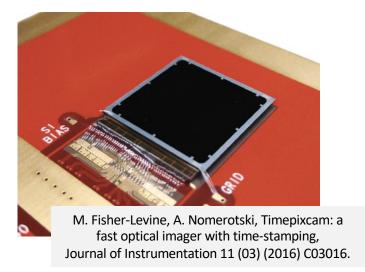
world competitive precision with a modest experiment (for bright stars)

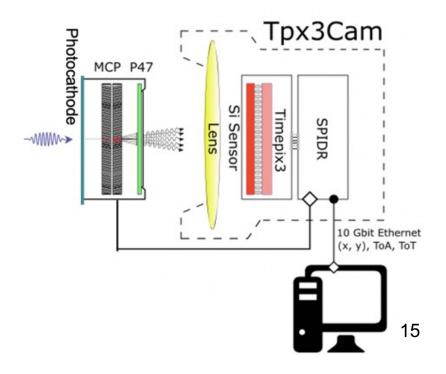
$$\sigma[\Delta\theta] \sim 10\mu as ~(\sim 10^{-11} \, rad)$$

Requirements for detectors

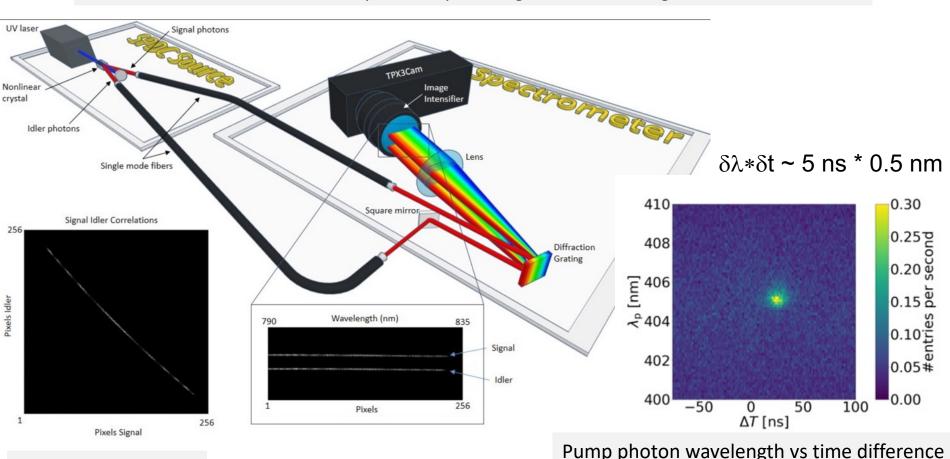

- Photons must be close enough in frequency and time to interfere → temporal & spectral binning: need ~ 0.01 ns * 0.2 nm for 800 nm
- Fast imaging techniques are the key
 - Several promising technologies: CMOS pixels+MCP, SPADs, SNSPDs, streaking
- Spectral binning: diffraction gratings, Echelle spectrometers
 - Need large number of bins


Intensified Timepix3 Camera


time-stamps single photons with ns resolution


Camera = intensifier + sensor + ASIC + readout

- 256 x 256 array
- 1.6 ns time bin, data-driven readout

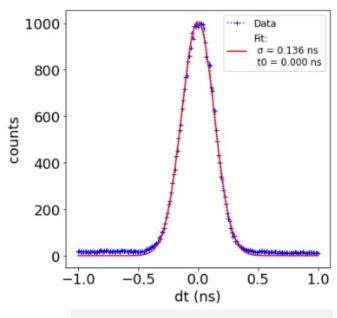


Spectral binning

In collaboration with NRC (Ottawa) D.England, Y.Zhang et al

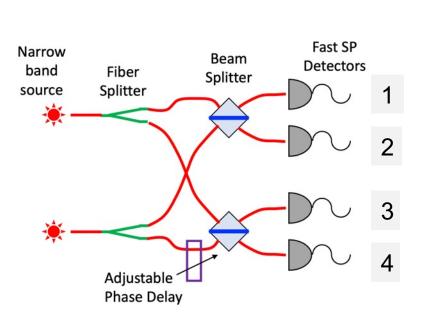
arxiv.org/abs/2105.09431

Y Zhang, D England, A Nomerotski, P Svihra et al, Multidimensional quantum-enhanced target detection via spectrotemporal-correlation measurements, Physical Review A 101 (5), 053808


P Svihra et al, Multivariate Discrimination in Quantum Target Detection, Appl. Phys. Lett. **117**, 044001 (2020)

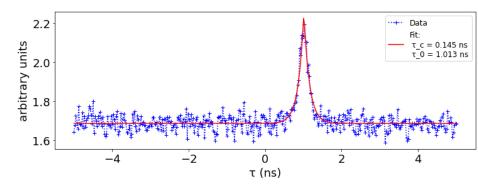
Fast timing technologies

- Superconducting nanowires (SNSPD)
 - In our measurements: 100 ps resolution for single photons, high QE
 - 3 ps SNSPD devices reported


Other technologies under evaluation

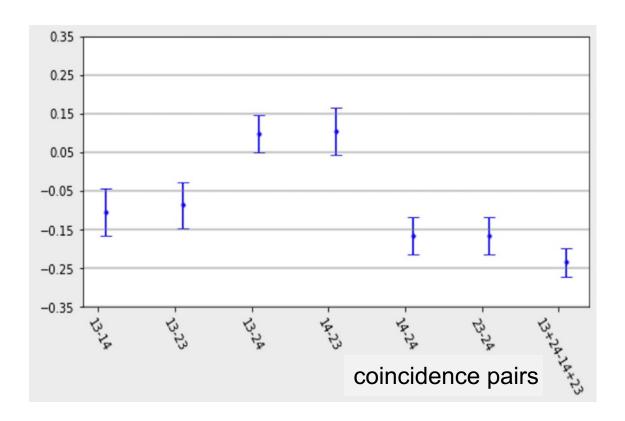
- Single Photon Avalanche Device (SPAD)
 - 10 ps resolution possible
 - Scalable: 1D and 2D matrices
- Streaking cameras
 - Use spatial information for time measurement
 - 1 ps resolution possible

SPDC pairs in SNSPD

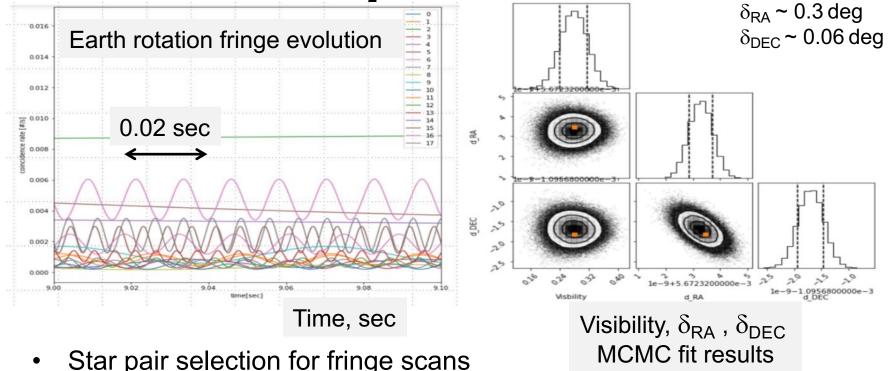

Experiments in progress

Bench-top model of two-photon interferometry

Ar vapor lamps (794 nm line) with narrow band filters Superconducting nanowire single-photon detectors (Single Quantum)

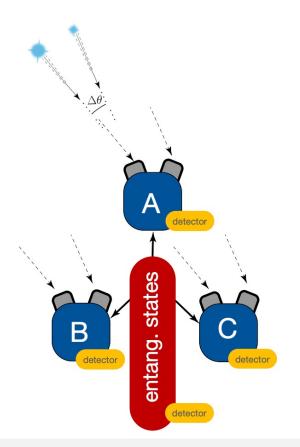

Strong HBT peak with single lamp

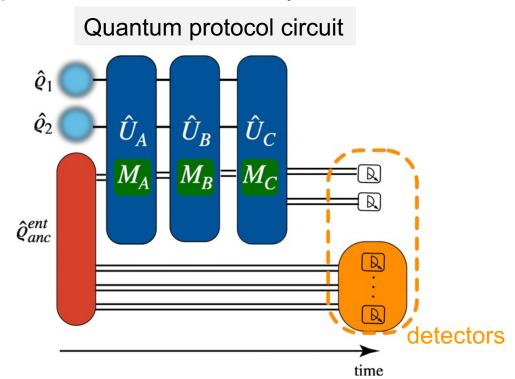
First results


- Effect can be seen in coincidence correlations between pairs of SNSPD channels
 - Technique is less sensitive to phase instability (~ 10 sec)
- Results agree with predictions, correlations ~ 0.1 -0.2 @ > 3 σ

arxiv.org/abs/2107.09229

Next steps


Preparations for on-sky experiments


- Star pair selection for fringe scans
 - Used catalog of bright stars visible from BNL site
- Modeled reconstruction of fringes to evaluate experimental errors
- Paper in preparation

Developing the quantum

Use multi-partite entanglement (ex W or GHZ states) distributed between multiple stations and quantum protocol to process information in noisy environment

Geometry: 2 stars + A,B,C telescope stations + source of entangled photon states + detectors

- Density operators ρ
- Multi-partite entanglement is distributed over multiple stations
- Quantum protocol evaluates experimental observables
- Paper in preparation

Summary

- Two-photon amplitude interference can be used to improve astrometrical precision by orders of magnitude
 - Application of quantum entanglement and teleportation techniques to astronomy with great potential
- Not far from practical implementation with existing technologies
 - Motivates new technologies for fast single photon detection with sub-ns resolution
- Planning on-sky measurements
- Developing theoretical framework, looking for new observables

Eden Figueroa Paul Stankus Tom Tsang

Justine Haupt

Mael Flament **Guodong Cui**

Sonali Gera

Dimitros Katramatos

Michael O'Connor

Gabriella Carini

Anand Kandasamy

Michael Keach

Steven Paci

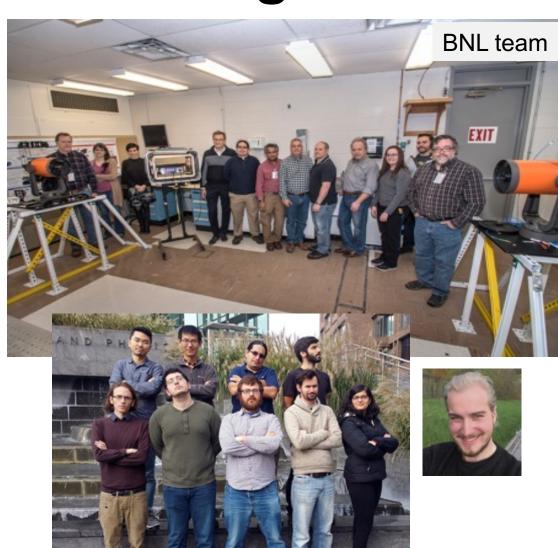
Jonathan Schiff

Alex Parsells

Zhi Chen

Anze Slosar

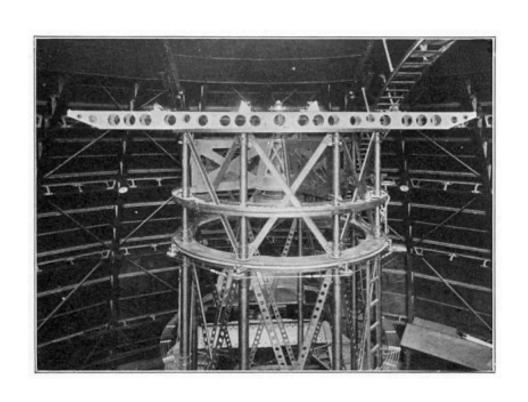
Olli Saira


Denis Dolzhenko

Stephen Vintskevich

Ning Bao

Jingming Long Martin van Beuzekom Erik Maddox Jord Prangsma **Duncan England** Yingwen Zhang Peter Svihra


Acknowledgements

SBU team

spares

In the optical

Siderostat Slits-Different Lens < sources yield shifted fringes

Michelson Stellar Interferometer at Mt. Wilson c. 1920, after original idea by Michelson & Fizeau c. 1890

World-competitive precision

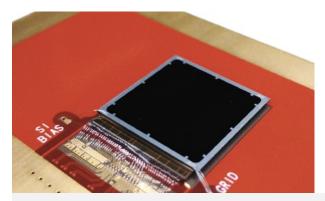
$$\sigma\left[\Delta\theta\right] = \sqrt{\frac{6}{\pi^2\kappa}} \, \frac{1}{V} \, \frac{\lambda}{B} \, \frac{1}{T\Omega_{\oplus} \sin\theta_0} \, \frac{1}{\sqrt{\bar{n}T}}$$

A modest experiment:

- Bright stars, mag 2
- 1 m² collecting area
- 10⁴ seconds observation
- 0.15 nsec time resolution
- 10⁴ spectral channels
- 200 m baseline

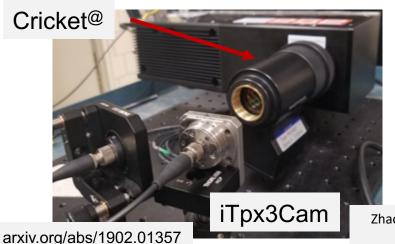
 \overline{n} = average pair rate T = total observation time

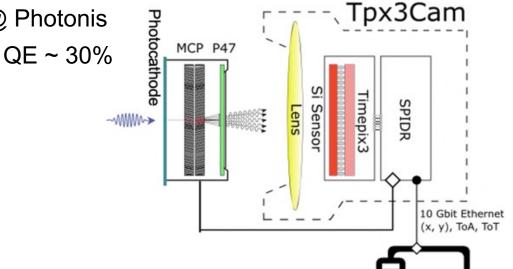
Track day-over-day changes in $\Delta\theta$ to observe parallax, proper motion, orbital motion, gravitational lensing

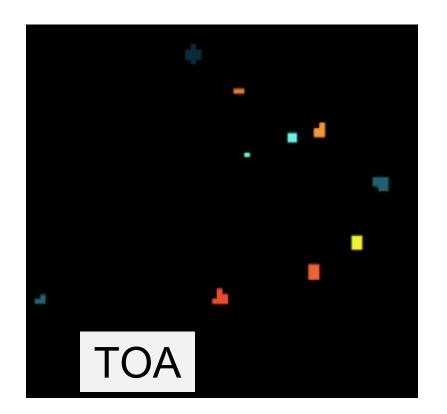

$$\sigma[\Delta\theta] \sim 10\mu as \ (\sim 10^{-11} \, rad)$$

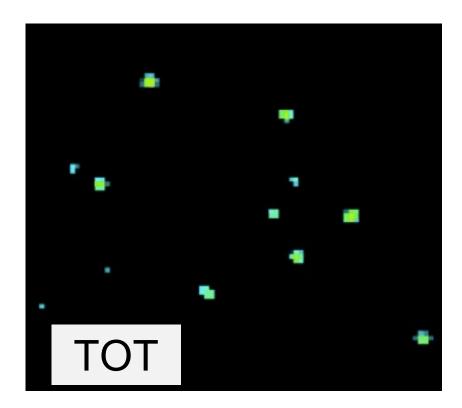
Intensified Timepix3 Camera

time-stamps single photons with ~ ns resolution

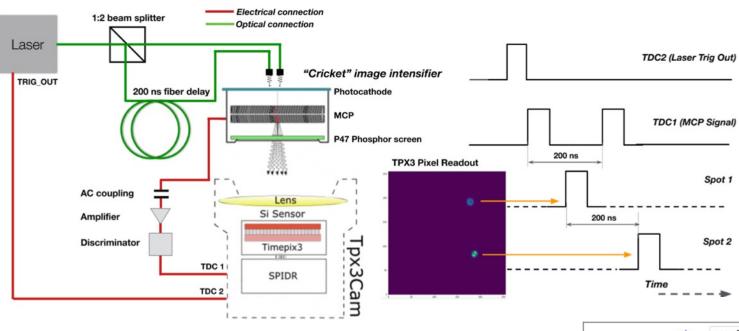

Camera = intensifier + sensor + ASIC + readout

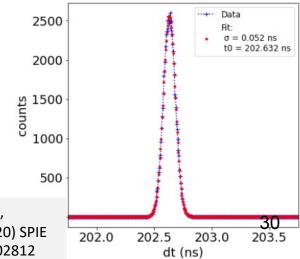

- Optical sensor with high QE @ BNL
 - Sensor is bump-bonded to chip Timepix3
- Timepix3 ASIC @ CERN
 - 256 x 256 array, 55 x 55 micron pixel
 - 1.6 ns timing resolution, data-driven readout


 M. Fisher-Levine, A. Nomerotski, Timepixcam: a fast optical imager with time-stamping,
 Journal of Instrumentation 11 (03) (2016) C03016.


- 10 Gbs readout SPIDR @ Amsterdam Scientific Instruments
- Intensifier with GaAs photocathode @ Photonis

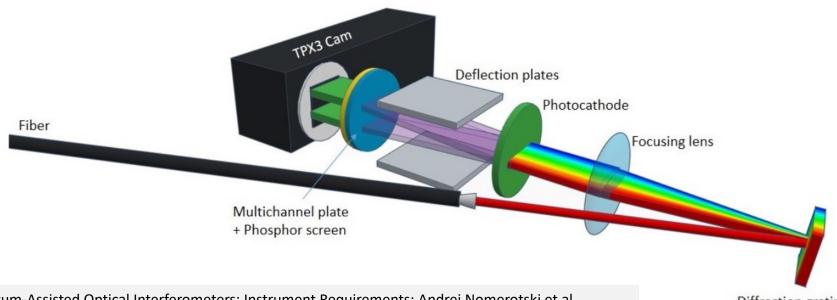
Zhao et al, Coincidence velocity map imaging using Tpx3Cam, a time stamping optical camera with 1.5 ns timing resolution, Review of Scientific Instruments 88 (11) (2017) 113104.




Each photon is a cluster of pixels \rightarrow 3D (x,y,t) centoiding

Time resolution: 2 ns / photon

MCP Timing Performance


- Micro-channel plate (MCP) is fast
 - Demonstrated resolution < 30 ps
- MCP readout for Tpx3 camera
 - 50 ps, not for single photons yet

Quantum-Assisted Optical Interferometers: Instrument Requirements; Andrei Nomerotski et al, Proceedings Volume 11446, Optical and Infrared Interferometry and Imaging VII; 1144617 (2020) SPIE Astronomical Telescopes +Instrumentation, https://doi.org/10.1117/12.2560272; arxiv:2012.02812

Possible technologies: Streaking

- Streaking: use a spatial coordinate for time measurement
 - Deflect photoelectrons by oscillating field
 - 1 ps resolution possible

Quantum-Assisted Optical Interferometers: Instrument Requirements; Andrei Nomerotski et al, Proceedings Volume 11446, Optical and Infrared Interferometry and Imaging VII; 1144617 (2020) SPIE Astronomical Telescopes +Instrumentation, https://doi.org/10.1117/12.2560272; arxiv:2012.02812

Diffraction grating