Imaging and time-stamping single photons with nanosecond resolution for QIS applications

> Andrei Nomerotski (BNL) Fermilab 23 October 2020

'Normal' fast CMOS camera: 5 kfps = 0.2 ms/frame

• Soap bubble

G.Etoh

Normally signal is integrated in a slice of time

Can achieve faster imaging by gating (of intensifier)

- Smaller time window = Less signal = Lower occupancy
- Ultimately resolve single photons

Imaging with photon counting

Photons appear as standalone objects $\leftarrow \rightarrow$ data driven readout Has parallels with x-ray imaging and particle detection in HEP

Low occupancy

Integrated image

L. M. Hirvonen, M. Fisher-Levine, K. Suhling, and A. Nomerotski: 'Photon counting phosphorescence lifetime imaging with TimepixCam'. Rev. Sci. Instrum. 88, 013104 (2017).

Alternative Approach to Optical Imaging

- Detect and time stamp photons, one by one, using intelligent pixels with data-driven readout
- Accumulate statistics for images, also for more complex analysis (coincidences, correlations etc)

Frame-by-frame imaging \rightarrow continuous stream of time stamped single photons

Tpx3Cam: time-stamp 10 MHz flux of photons with 1 ns precision

A.Nomerotski, Imaging and time stamping of photons with nanosecond resolution in Timepix based optical cameras, Nuclear Instruments and Methods Sec A, Volume 937 (2019) pp 26-30

Timepix Optical Cameras

Hybrid pixel detectors

Have roots in R&D for LEP/LHC vertex detectors

Lukas Tlustos and Erik H. M. Heijne, Performance and limitations of high granularity single photon processing X-ray imaging detectors, in CERN proceedings (2005)

- Decouple readout chip and sensor
- Optimize technologies for chip and sensor separately

Use different sensors with same readout, versatile approach for x-rays (Si, CZT) \rightarrow we will use OPTICAL sensors

Photon absorption in silicon

- Blue photons are absorbed near the surface (~0.25 um for 430 nm, P47 max emission)
- ~1 um for 500 nm, ~10 um for 800 nm

WAVELENGTH (nm)

Thin window optical sensors

Developed at BNL, first produced at CNM (Barcelona, Spain) in 2015 Surface preparation is very important, inspired by astronomical CCDs (LSST)

Timepix3 Camera → Tpx3Cam

Camera = sensor + ASIC + readout

Timepix3 ASIC:

- 256 x 256 array, 55 x 55 micron pixel
 14 mm x 14 mm active area
- 1.56 ns timing resolution
- Data-driven readout, 600 e min threshold, 80 Mpix/sec, no deadtime
- each pixel measures time and flux,
 ~1µs pixel deadtime when hit

T. Poikela et al, Timepix3: a 65k channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout, Journal of Instrumentation 9 (05) (2014) C05013.

Sensor is bump-bonded to chip

Use existing x-ray readouts: SPIDR (Nikhef & ASI) www.amscins.com

Zhao et al, Coincidence velocity map imaging using Tpx3Cam, a time stamping optical camera with 1.5 ns timing resolution, Review of Scientific Instruments 88 (11) (2017) 113104.

Use existing readouts of x-ray detectors:

TPX3Cam @ ASI

SPIDR readout for Timepix3 (Nikhef, ASI)

J. Visser et al, SPIDR: a readout system for Medipix3 and Timepix3, Journal of Instrumentation 10 (12) (2015) C12028.

eX readout for Timepix2 (Imatek)

Applications & Results

- Ion imaging briefly
- Quantum imaging in more detail
- HEP applications briefly

• Lifetime imaging – next time

Ion Imaging

A. Zhao, M. van Beuzekom, B. Bouwens, D. Byelov, I. Chakaberia, Ch. Cheng, E. Maddox, A. Nomerotski, P. Svihra, J. Visser, V. Vrba and T. Weinacht: 'Coincidence velocity map imaging using Tpx3Cam, a time stamping optical camera with 1.5 ns timing resolution'. Rev Sci Instrum. 88(11), 10.1063/1.4996888 (2017)

Advantages of optical approach

Outside of vacuum

- Decoupled from setup
- No cooling in vacuum
- No HV close to electronics

Power of optics

- lens & mirrors
- magnification/ demagnification, flexible mapping between scintillator screen and sensor

"Hybrid" approach

- Use same camera for different applications
- Easily upgradable: different cameras with same setup
- Use different photocathodes/ intensifiers with same camera

Ions in TimepixCam

 M. Fisher-Levine, R. Boll, F. Ziaee, C. Bomme, B. Erk, D. Rompotis, T. Marchenko, A. Nomerotski and D. Rolles: *"Time-Resolved Ion Imaging at Free-Electron Lasers Using TimepixCam"*. Journal of Synchrotron Radiation.(2018) 25 https://doi.org/10.1107/S16005775170

 M. Fisher-Levine, R. Boll, F. Ziaee, C. Bomme, B. Erk, D. Rompotis, T. Marchenko, A. Nomerotski and D. Rolles: *"Time-Resolved Ion Imaging at Free-Electron Lasers Using TimepixCam"*. Journal of Synchrotron Radiation.(2018) 25 https://doi.org/10.1107/S16005775170

Single (optical) photons

Intensifier

Intensified cameras are common: iCCD iCMOS cameras

sifier Intensifier Contraction of the second second

Image

TPX3Cam

Image intensifier (Photonis PP0360EG)

Choice of photocathodes

Photonis photocathodes

Single Photons in Tpx3Cam

1 ms slice of data 1.5ns time-stamping

Tpx3Cam + intensifier by Photonis data taken by J. Long (ASI)

Each photon is a cluster of pixels \rightarrow 3D (x,y,t) centoiding

Spatial resolution: 0.1 pixel / photon

Time resolution: < 1 ns / photon

Quantum Information Science, Quantum-Assisted Imaging for telescopes and others

Will mention other applications only briefly

Quantum Network

- Attenuation in fibers → need quantum repeater to reproduce qubits
 Simple amplification will not conserve the quantum state
- Qubit teleportation: produce entangled photons and send them to two locations
- Bell State Measurement (BSM) on one photon will collapse the wave function of the other one (or swap entanglement)

Quantum Communications

Collaboration with Stony Brook U (Figueroa group)

Long-term goals :

Long-distance **quantum network with quantum repeater** using a modular approach based on

- room temperature Rb quantum memories;
- entangled photon sources compatible with memories;
- characterization devices for single photons

Quantum sensing: investigate how photonic quantum systems entangled at long distances can be applied to sensing

Demonstration of scalability: connect multiple & diverse quantum devices

Path to quantum internet

SBU BNL Quantum repeater test bed

Characterization of Single Photon Down-Conversion Source

- Find coincidences, plot as function of two polarizations
- Figure of merit: S-value
 - If > 2: photons are entangled
 - max value: $2\sqrt{2} = 2.82$
- Measurement:
 S-value = 2.72±0.02

Time resolution: 2ns

Spatial characterization of tanglement

Measure S-value for 81 combinations of subareas

Fast camera spatial characterization of photonic polarization entanglement

Christopher Ianzano, Peter Svihra, Mael Flament, Andrew Hardy, Guodong Cui, Andrei Nomerotski & Eden Figueroa ⊠

Scientific Reports 10, Article number: 6181 (2020) | Cite this article

2.6

2.5

2.4

2.3

2.2

2.1

Uniform within errors as expected

Characterization of entanglement for longdistance network

Quantum entanglement distribution between BNL and SBU

Quantum Astrometry

BNL QuantISED project, started in Sept 2019
 – DOE QIS-HEP program

• Idea: employ quantum entanglement to improve precision of optical interferometers

Two-photon amplitude interferometry for precision astrometry Paul Stankus, Andrei Nomerotski, Anže Slosar, Stephen Vintskevich https://arxiv.org/abs/2010.09100

Astronomy picture of the decade

Black hole in the center of M87 imaged at 1.3mm

Achieved by radio interferometry with ~10000 km baselines

Classical optical interferometer

sensitive to features on angular scale

- Need to bring light to the same location
- Baselines limited to 100 m
Optical Interferometers

CHARA (Center for High Angular Resolution Astronomy) Observatory at Mt.Wilson in CA

The Astrophysical Journal, 628:453–465

Beam line path length control at CHARA

Path lengths must be balanced so arrival times on two legs match to within $\Delta t \sim 1/\nu$ i.e. 1/photon bandwidth

Optical interferometry examples

Dynamic convection on Antares (VLTI, ESO)

CHARA Collaboration, "First Resolved Images of the Eclipsing and Interacting Binary β Lyrae"; arXiv:0808.0932, The Astrophysical Journal, 684: L95–L98.

Nova in progress (CHARA)

Two-photon techniques (quantum mechanical)

Original idea in 2012

- Measure photon wave function phase difference performing Bell State Measurement at one station so teleporting the sky photon to the other station
- Enables long baselines and could improve astrometric precision by orders of magnitude

Possible impact on astrophysics and cosmology

it is a blue-sky research

BUT if successful : orders of magnitude better astrometry

- Imaging of black holes \rightarrow general relativity checks
- Parallax: improved distance ladder \rightarrow SN science \rightarrow DE
- Proper motions: local DM patterns
- Microlensing, see motions and shape changes, DM hunting
- Gravitational waves, coherent motions of stars
- Exoplanets
- etc

Quantum Astrometry

Proof of principle experiments: demonstrate two-photon interference using two sky sources

https://arxiv.org/abs/2010.09100

$$P(c^{2}) = P(d^{2}) = P(g^{2}) = P(h^{2}) = 1/8$$

$$P(cg) = P(dh) = (1/8)(1 + \cos(\delta_{1} - \delta_{2}))$$

$$P(ch) = P(dg) = (1/8)(1 - \cos(\delta_{1} - \delta_{2}))$$

$$N_{c}(xy) = \eta_{1}\eta_{2}A^{2} \int_{0}^{T_{r}} P_{L,R,\tau}^{\text{two photons}} d\tau = A^{2}\eta_{1}\eta_{2}T_{r} \bigg[(I_{1}+I_{2})^{2} + I_{1}^{2}\frac{\tau_{c}g_{11}}{T_{r}} + I_{2}^{2}\frac{\tau_{c}g_{22}}{T_{r}} \pm 2I_{1}I_{2}\frac{\tau_{c}g_{12}}{T_{r}} \cos \bigg(\frac{\omega_{0}B(\sin\theta_{1}-\sin\theta_{2})}{c} + \frac{\omega_{0}\Delta L}{c} \bigg) \bigg] (30)$$

- Relative path phase difference δ₁ δ₂ can be extracted from the coincidence rates of four single photon counters: c, d, g and f
- Different from Hanbury Brown Twiss intensity interferometry, can produce both negative and positive rate oscillations → amplitude interferometry
- Requirements to detectors: photons must be similar enough to interfere → excellent (<ns) time resolution and spectral resolution → 1 ns & 0.001 nm (can be traded)

Observables

https://arxiv.org/abs/2010.09100

- Earth rotation fringe rate
 - Path differences gradually modulated by Earth's rotation

$$\langle N_{xy} \rangle(t) = \bar{N}_{xy} \left[1 \pm V \cos \left(\omega_f t + \Phi \right) \right]$$

$$\omega_f = \frac{2\pi B \Omega_{\oplus} \sin \theta_0}{\lambda} \Delta \theta$$

For magnitude 2 stars (bright!)

- 0.1 Hz coincidence rate in 0.15 ns bin & 1 GHz bandwidth
- Assuming $4*10^4$ 1 GHz bins and one night (10⁴ sec) get 10 µas resolution
 - for 500 1000 nm range \rightarrow 3*10⁵ 1 GHz bins

First experiments

Lab demonstration of two-photon interference (Hong-Ou-Mandel effect) and spectroscopic binning using various single photon sources: coherent, down-conversion and thermal

Work in progress, not published yet

Hong-Ou-Mandel effect

- 1) HOM dip for coincidences of two fibers
- 2) Bunched photons in single fibers

HOM Setup

Examples of bunched HOM photons

Hong-Ou-Mandel effect

$$f(d - d_0) = \frac{3}{4\sqrt{\pi}} \int dy \, [\operatorname{sinc} \left(y^2\right)]^2 \, e^{-iy \frac{\sqrt{4\log 2}(d - d_0)}{FWHM}}$$

1600

0.14

0.16

0.18

delay length, mm

0.20

0.22

Proves that photon counting is real

Spectroscopic binning for Quantum-Enhanced Target Detection

In collaboration with NRC (Ottawa CA) D.England et al Primary interest: quantum LIDAR and quantum illumination

Y Zhang, D England, A Nomerotski, P Svihra et al, Multidimensional quantum-enhanced target detection via spectrotemporal-correlation measurements, Physical Review A 101 (5), 053808

Spectral and temporal correlations

Y Zhang, D England, A Nomerotski, P Svihra, S Ferrante, P Hockett, B Sussman, Multidimensional quantum-enhanced target detection via spectrotemporal-correlation measurements, Physical Review A 101 (5), 053808 (2020)

Optimal multivariate discrimination

Since both temporal and spectral information is available on pair by pair basis we can do multivariate analysis, simplest one using likelihood ratios

Pump photon wavelength vs delta T

P Svihra, Y Zhang et al, Multivariate Discrimination in Quantum Target Detection, arXiv preprint arXiv:2005.00612 Appl. Phys. Lett. **117**, 044001 (2020)

Scalability

Tpx3Cam supports 10MHz single photon rate : = 10 x 10 x 100kHz beams

Photon router:

- Used acoustooptical modulators to create 8x8 grid
- Arbitrary routing between spots
- 10 ns time resolution, 1 μs switching

log scale

More quantum imaging

Imaging of trapped ions

Time resolved qubit manipulation (Blinov group, UWash)

Register 493 nm photons to probe dark/bright state of ion = state of qubit register

Fast Simultaneous Detection of Trapped Ion Qubit Register with Low Crosstalk, M.Zhukas, P.Svihra, A.Nomerotski, B.Blinov, arxiv.org/abs/2006.12801

single qubit detection fidelity 0.99995

- Emission rate oscillations due to Doppler shift of laser light wrt moving ion
- Simultaneous time & position information allows to monitor ion micro-motions
- Powerful technique to characterize traps

Paper in preparation: Direct observation of micromotions in Paul trap

Ion micromotions

- Emission rate oscillations due to Doppler shift of laser light wrt moving ion
- Simultaneous time & position information allows to monitor ion micro-motions
- Period 54 ns
- Amplitude 0.4 micron

Liudmila A. Zhukas, Maverick J. Millican, Peter Svihra, Andrei Nomerotski, Boris B. Blinov, arxiv: 2010.00159

Imaging with 30 ps timing

take precise timing from MCP

FIG. 1. (a) Schematic of the experimental setup and (b) a typical TOF trace measured from the digitizer.

D.Debrah , G.Stewart, G.Basnayake, A.Nomerotski , P.Svihra , S.K.Lee, and Wen Li **Developing a camera-based 3D momentum imaging system capable of 1 Mhits/s** Rev. Sci. Instrum. 91, 023316 (2020)

- 32 ps timing resolution from MCP+digitizer
 - 0.7 ns deadtime

HEP applications

TPX3Cam on ARIADNE 1-ton dual phase Liquid argon TPC

Image light from avalanches in gas phase in THGEM

hep.ph.liv.ac.uk/ariadne/index.html Kostas Mavrokoridis et al

D. Hollywood et al, 2020 ARIADNE—A novel optical LArTPC: technical design report and initial characterisation using a secondary beam from the CERN PS and cosmic muons *JINST* **15** P03003

A. Roberts et al., 2019 First demonstration of 3D optical readout of a TPC using a single photon sensitive Timepix3 based camera *JINST* **14** P06001

LAr Cosmic Muons (10msec slice)

5.5 MeV alphas in CF₄ gas in Tpx3Cam

Color = TOA

Color = TOT

First demonstration of 3D optical readout of a TPC using a single photon sensitive Timepix3 based camera, A Roberts, P Svihra, A Al-Refaie, H Graafsma, J Küpper, K Majumdar, ... K. Mavrokoridis, A.Nomerotski ... Journal of Instrumentation 14 (06), P06001 (2019)

More ideas

- Scintillator flashes are imaged by intensified Tpx3Cam
- Alphas, hard x-rays, neutrons, ...

Advantage: outside of the beam, around the corner (with mirrors)

Alphas in LYSO in Tpx3Cam

optical camera G. D'Amen,^a M. Keach,^a A. Nomerotski,^a P. Svihra,^{b,c} A. Tricoli^a

Future directions

Timepix3 → Timepix4

by Medipix4 collaboration

X. Llopart

		Timepix3	Timepix4
Technology		IBM 130nm	TSMC 65nm
Pixel Size		55 x 55 μm	≤ 55 x 55 μm
Pixel arrangement		3-side buttable	4-side buttable
		256 x 256	256 x 256 or bigger
Operating Modes	Data driven	PC (10-bit) and TOT (14-bit)	CRW: PC and iTOT (1216-bit)
	Frame based	TOT and TOA	
Zero-Suppressed	Data driven	< 80 MHits/s	< 500 MHits/s
Readout	Frame based	YES	YES
TOT energy resolution		< 2KeV	< 1Kev
Time resolution		1.56ns	~200ps

WISH LIST:

ASIC with optimized timing for clusters and triggering capabilities, synchronization hooks for outside devices and multiple chips Readout with several 10 ps TDCs in synch with Tpx

Single Photon Sensitivity without intensifier?

- So far needed outside amplification (MCP) to have a detectable signal
- Limitation: QE ~ 35% (for 800nm)

Single Photon Sensitivity without intensifier?

 Can the amplification be integrated into the sensor? Silicon QE can be >90%

SPADs

 Currently PDE (photon detection eff) ~30-50% but there is no fundamental limit. High PDE is crucial for some QIS applications

100 ps 32x32 pixel SPAD Camera

NATURE COMMUNICATIONS | ARTICLE OPEN

< 🛛 🔒

Single-photon sensitive light-in-fight imaging

Genevieve Gariepy, Nikola Krstajić, Robert Henderson, Chunyong Li, Robert R. Thomson, Gerald S. Buller, Barmak Heshmat, Ramesh Raskar, Jonathan Leach & Daniele Faccio

Affiliations | Contributions | Corresponding authors

Nature Communications 6, Article number: 6021 | doi:10.1038/ncomms7021 Received 18 August 2014 | Accepted 02 December 2014 | Published 27 January 2015

fully digital 8×16 pixel SPAD array

Summary

• Time stamping of optical photons with data-driven readout is attractive alternative to frame readout

Works well for sparse data Needs intelligent pixels with complex functionality

- Timing resolution: 10 nsec \rightarrow 0.1 nsec
- Photon sensitivity: 1000 photons \rightarrow single photon
- New technologies for fast single photon detection → hot topic in QIS applications

Acknowledgements

Eden Figueroa Paul Stankus Tom Tsang Justine Haupt Mael Flament Guodong Cui Sonali Gera Youngshin Kim Dimitros Katramatos Michael O'Connor Gabriella Carini David Asner Anand Kandasamy Michael Keach Steven Paci

Jingming Long Martin van Beuzekom Bram Bouwens Erik Maddox Jord Prangsma Duncan England Yingwen Zhang Boris Blinov Mila Zhukas Maverick Millican Peter Svihra

ToT vs ToF: time walk

Time resolution: TOT correction and centroiding

before TOT correction

after TOT correction

- After TOT correction < 2 ns (rms)
- Each pixel measure TOA independently → time centroiding Time resolution: < 1 ns / photon

S. Tsigaridas, M.v. Beuzekom, H.v.d. Graaf, F. Hartjes, K. Heijhoff, N.P. Hessey, P.J. de Jong, V. Prodanovic, Timewalk correction for the Timepix3 chip obtained with real particle data, Nuclear Instruments and Methods A, 930, (2019) pp185-190
Coincidences in multiple cameras

Camera clock is stable only to few ppm

1 ppm = 1 μ sec per 1 sec we aim for nsec resolution so not acceptable

Need drift correction Need to synchronize two camera clocks = find T_0

Use White Rabbit system (CERN) to synchronize

Spatial and temporal characterization of polarization entanglement, A Nomerotski, D Katramatos, P Stankus, P Svihra, G Cui, S Gera, ..., International Journal of Quantum Information, 1941027

Optimal multivariate discrimination

P Svihra, Y Zhang et al, Multivariate Discrimination in Quantum Target Detection, arXiv preprint arXiv:2005.00612 Appl. Phys. Lett. **117**, 044001 (2020)