Fast Imaging of Single Photons for Astronomical Applications

Andrei Nomerotski, Brookhaven National Lab

19 March 2021, CPAD2021
Idea: employ quantum entanglement to improve astrometrical precision of optical interferometers

Two-photon amplitude interferometry for precision astrometry
Paul Stankus, Andrei Nomerotski, Anže Slosar, Stephen Vintskevich

Will also discuss experimental implications: temporal and spectral resolutions required for implementation

Astronomy picture of the decade

Black hole in the center of M87 imaged at 1.3mm

Achieved by radio interferometry with ~10000 km baselines
In the optical

Michelson Stellar Interferometer at Mt. Wilson c. 1920, after original idea by Michelson & Fizeau c. 1890

Different sources yield shifted fringes
Radio: $\bar{n} \gg 1$

- Can literally record entire waveform, over some band, separately at each receiver station and interfere later offline.

Optical: $\bar{n} \ll 1$

- One photon at a time! Need to bring paths to common point in real time.
 - Need path length *compensated* to better than c/bandwidth.
 - Need path length *stabilized* to better than λ.
 - Accuracy ~ 1 mas
 - Max baselines to ~ 100 m.
Optical interferometry examples

Dynamic convection on Antares (VLTI, ESO)

Nova in progress (CHARA)
Two-photon techniques
• Measure photon wave function phase difference performing Bell State Measurement at one station so teleporting the sky photon to the other station
• Enables long baselines and could improve astrometric precision by orders of magnitude

Quantum (two-photon) interferometer

\[\Delta \theta \sim \frac{\lambda}{b} \]
Quantum Astrometry

Idea: use another star as source of entangled states for the interference

Relative path phase difference $\delta_1 - \delta_2$ can be extracted from the coincidence rates of four single photon counters: c, d, g and f

Different from Hanbury Brown Twiss intensity interferometry, can produce both negative and positive rate oscillations \(\rightarrow\) amplitude interferometry
Earth rotation fringe scan

\[\langle N(xy) \rangle = \frac{k(S_1 + S_2)^2}{8} \left[1 \pm V_{2PS} \cos \left(\frac{2\pi B}{\lambda} (\sin \theta_1 - \sin \theta_2) + \frac{2\pi \Delta L}{\lambda} \right) \right] \]

This will evolve as the Earth rotates

\[\langle N_{xy}(t) \rangle = \bar{N}_{xy} \left[1 \pm V \cos (\omega_f t + \Phi) \right] \]

Coincidence rates oscillate

\[\omega_f = \frac{2\pi B \Omega_\oplus \sin \theta_0}{\lambda} \Delta \theta \]

Fringe oscillation rate is a direct measure of sources’ opening angle!

Can measure with high precision
World-competitive precision

\[
\sigma [\Delta \theta] = \sqrt{\frac{6}{\pi^2 \kappa}} \frac{1}{V} \frac{\lambda}{B} \frac{1}{T \Omega_\oplus} \frac{1}{\sin \theta_0} \frac{1}{\sqrt{\bar{n}T}}
\]

A modest experiment:

- Bright stars, mag 2
- 1 m² collecting area
- 10⁴ seconds observation
- 0.15 nsec time resolution
- 10⁴ spectral channels
- 200 m baseline

\[\sigma[\Delta \theta] \sim 10 \mu\text{as} \ (\sim 10^{-11} \text{rad})\]

\(\bar{n}\) = average pair rate
\(T\) = total observation time

Track day-over-day changes in \(\Delta \theta\) to observe parallax, proper motion, orbital motion, gravitational lensing

State of art: 7 \(\mu\)as GAIA (2013 -)
Possible impact on astrophysics and cosmology

So far a blue-sky research offers orders of magnitude better astrometry

- Parallax: improved distance ladder \rightarrow SN science \rightarrow Dark Energy
- Proper motions: local Dark Matter patterns
- Microlensing, see motions and shape changes, Dark Matter hunting
- Gravitational waves, coherent motions of stars
- Exoplanets
- etc

Requirements for detectors

- Photons must be close enough in frequency and time to interfere → temporal & spectral binning: need ~ 0.01 ns * 0.2 nm for 800 nm

- Fast imaging techniques are the key
 - Several promising technologies: CMOS pixels+MCP, SPADs, SNSPDs, streaking
 - Target 1-100 ps resolution

- Spectral binning: diffraction gratings, Echelle spectrometers
 - Fringe rate resolution doesn’t depend on bin width - wider spectral binning gives lower visibility but same statistical precision
 → what’s important is # of spectral channels

- Photon detection efficiency: high
Timepix3 Camera \(\rightarrow\) Tpx3Cam

Camera = sensor + ASIC + readout

Optical sensor with high QE developed at BNL
- Sensor is bump-bonded to chip Timepix3

Timepix3 ASIC:
256 x 256 array, 55 x 55 micron pixel
- 1.56 ns timing resolution
- Data-driven readout, 80 Mpix/sec, no deadtime

Intensified camera is single photon sensitive

Image intensifier (Photonis PP0360EG)

Quantum efficiency ~ 30%
Each photon is a cluster of pixels
→ 3D (x,y,t) centroiding

Time resolution: 2 ns / photon
Spectroscopic binning

In collaboration with NRC (Ottawa) D. England, Y. Zhang et al.

Pump photon wavelength vs time difference

\[\delta \lambda \times \delta t \sim 5 \text{ ns} \times 0.5 \text{ nm} \]

MCP Timing Performance

- Micro-channel plate (MCP) is fast
 - Demonstrated resolution < 30 ps
- MCP readout for Tpx3 camera
 - 50 ps, not for single photons yet

Possible technologies: SNSPD

- Superconducting nanowires
 - Used Single Quantum SNSPD
 - 100 ps resolution for single photons using SPDC photon pair source
 - 3 ps devices reported

Possible technologies: Streaking

- Streaking: use a spatial coordinate for time measurement
 - Deflect photoelectrons by oscillating field
 - 1 ps resolution possible

Possible technologies: SPADs

- Starting characterization of 50 ps SPADs
Experiments in progress

Bench-top model of two-photon interferometry
Ar vapor lamps with ultra-narrow band filters
Superconducting nanowire single-photon detectors

Supported at BNL by DOE HEP QuantISED grant 2020-21
Summary

- Two-photon amplitude interference can be used to improve astrometrical precision by orders of magnitude
 - Application of quantum entanglement and teleportation techniques to astronomy with great potential
- Not far from practical implementation with existing technologies
 - Motivates new technologies for fast single photon detection with sub-ns resolution
Acknowledgements

Eden Figueroa
Paul Stankus
Tom Tsang
Justine Haupt
Mael Flament
Guodong Cui
Sonali Gera
Youngshin Kim
Dimitros Katramatos
Michael O’Connor
Gabriella Carini
David Asner
Anand Kandasamy
Michael Keach
Steven Paci

Jingming Long
Martin van Beuzekom
Bram Bouwens
Erik Maddox
Jord Prangsma
Duncan England
Yingwen Zhang
Boris Blinov
Mila Zhukas
Maverick Millican
Peter Svihra

BNL team

SBU team