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Astronomy picture of the decade

2019 ApJL 875 

Black hole in the center of M87 imaged at 1.3mm

Achieved by radio interferometry with ~10000 km baselines 

sensitive to features 
on angular scale

∆𝜃~ !
"



In classical times

Michelson Stellar Interferometer at Mt. Wilson c. 1920,
after original idea by Michelson & Fizeau c. 1890

Slits
Siderostat

Lens
Different 
sources 

yield 
shifted 
fringes



Radio Optical!𝑛 ≫ 1 !𝑛 ≪ 1

Can literally record entire 
waveform, over some 

band, separately at each 
receiver station and 
interfere later offline

One photon at a time!  Need to bring paths 
to common point in real time

Need path length compensated to better 
than c/bandwidth

Need path length stabilized to better than 𝜆
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Fig. 2.— Reconstructed images and two-component models of β Lyr . The left, middle
and right columns show the MACIM, BSMEM and model images respectively. Darker colors

indicate higher intensity. The darker component is the donor. The contours in the images
correspond to 0.3, 0.6, 0.9 of the peak intensity. Observing dates and corresponding phases

(from the ephemeris in Ak et al. 2007) are labeled in the first column. The best-fit χ2/DOF
of each image is labeled in the bottom left corner. The resolution of the reconstructed images

is 0.69 mas for the first epoch and 0.52 mas for the other 5 epochs, and the corresponding
beams are shown in the first and second epochs in the middle panels respectively. Due to
lack of enough resolution and the complexity of the radiative transfer at the first epoch when

the star is behind the disk, no reliable model is available for our limited data.

CHARA Collaboration, “First Resolved 
Images of the Eclipsing and Interacting 
Binary β Lyrae”;  arXiv:0808.0932, The 
Astrophysical Journal, 684: L95–L98, 
2008 September 10 Accuracy ~ 1 mas

Impressive results

Max baselines to ~ 100 m



Two-photon techniques



Intensity Interferometry

Source

Detectors

In	Hanbury	Brown	&	Twiss	(HBT)	intensity	interferometry,	
the	observable	is	the	correlation between	photon	detections	at	
two	separate	detectors

(𝑃𝑎𝑖𝑟𝑠)
(𝑆𝑖𝑛𝑔𝑙𝑒𝑠)(𝑆𝑖𝑛𝑔𝑙𝑒𝑠) =

/𝑎!" /𝑎!#| ⟩Ψ #

/𝑎!"| ⟩Ψ # /𝑎!#| ⟩Ψ # = 31 𝑘1 ≠ 𝑘2
2 𝑘1 = 𝑘2

Glauber theory of photodetection, c. 1963

1

2
Correlation

Baseline



HBT for astronomy

Hanbury Brown, Davis, Allen, Rome; MNRAS 137, (1967) p393-417

Stellar intensity interferometer 
at Narrabri, Australia, 1968



Two-photon amplitude techniques 
(quantum mechanical)



• Measure photon wave function phase difference performing Bell State Measurement 
at one station so teleporting the sky photon to the other station 

• Enables long baselines and could improve astrometric precision by orders of 
magnitude

Quantum (two-photon) interferometer

∆𝜃~ !
"

Second photon for quantum 
assist



Idea: use another star as source of entangled states for the interference 

• Relative path phase difference d1 - d2 can be extracted from the coincidence rates of 
four single photon counters: c, d, g and f

• Different from Hanbury Brown Twiss intensity interferometry, can produce both 
negative and positive rate oscillations à amplitude interferometry

https://arxiv.org/abs/2010.09100

Quantum Astrometry



Idea: use another star as source of entangled states for the interference 

• Relative path phase difference d1 - d2 can be extracted from the coincidence rates of 
four single photon counters: c, d, g and f

• Different from Hanbury Brown Twiss intensity interferometry, can produce both 
negative and positive rate oscillations à amplitude interferometry

https://arxiv.org/abs/2010.09100

Quantum Astrometry

Rates HBT

New oscillatory term!

Full QFT calculation



Earth rotation fringe scan

This will evolve as the Earth rotates
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two independent optical systems having only a low-
bandwidth classical signal link between them.

In the classical picture discussed in Section III and
Appendix A the connection is quite intuitive to under-
stand. Both approaches involve four-point correlators
(as opposed to two-point in the normal amplitude inter-
ferometry); but in the HBT scheme all four correlated
quantities come from the same source, while here they
come from two di↵erent sources. The crucial di↵erence
is that in the HBT e↵ect the only quadratic quantity one
can form from the single source corresponds to the in-
tensity, in which the phase information is lost. In the
two-source interferometry, the single telescope quadratic
quantity is the signal cross-correlation, which is a com-
plex quantity, thus encoding a phase di↵erence between
the two sources.

Consequently, the HBT observables measure the mag-
nitude of Fourier transformation of the image plane,
while the two-source interferometry measures the conju-
gate product of Fourier transforms of two image planes.
In this case the phase information is preserved fully if
one of the sources is a point source.

In the quantum picture, the di↵erences can be clearly
seen by examining Equation (22). The first two terms,
namely I

2
1 p1` |�1p!0q|2q and I

2
2 p1` |�2p!0q|2q, represent

the correlated intensity fluctuations (as in the HBT ef-
fect) in the case of each source, independently. In the case
of two point-like sources in the same field of view with
well distinguished ~k1 and ~k2, we end up with expressions
similar to (22), including the oscillatory term similar to
cos

`
!0B
c psin ✓1 ´ sin ✓2q ` !0�L

c

˘
as was determined, for

example, in [39].
In contrast, in the presented approach, transforma-

tion of the field operators (or, equivalently, of the photon
states) allows one to extract the angular information en-
coded in optical paths with higher accuracy. Again, this
is only possible because we assume that we are able to
distinguish and e↵ectively collect the spatial modes from
each source and operate with states like %̂~k1

b %̂~k2
. Thus,

the proposed amplitude interferometry captures more in-
formation from the photon field and, essentially, can be
seen as generalization of the original HBT technique.

VI. SKY OBSERVABLES

The usual goal of traditional interferometry is imaging,
ie reconstructing the shape and size of a source’s bright-
ness distribution on the sky. In image reconstruction the
primary observable for an observation from a given pair
of receivers is the amplitude, e.g. visibility, and phase of
the interference fringe pattern.

For astrometry, however, we are interested in the rela-
tive positions of di↵erent sources, and we can access this
in the present scheme by instead observing the spacing
of the fringes for the observables in Equations 15 and 16
during interferometric observations.

A. Earth rotation fringe rate

We can illustrate the essential idea by imagining an
idealized observation, where the baseline between the two
stations is straight east-west and both sources lie on the
celestial equator. The path di↵erences will then be grad-
ually modulated by Earth’s rotation. We can write the
source position angles ✓1 and ✓2 as functions of time

✓1ptq “ ✓0 ` ⌦Ct ✓2ptq “ ✓1ptq ` �✓ (36)

where ✓0 is the position of source 1 at the epoch chosen
as t “ 0, �✓ is the opening angle between the sources,
and ⌦C=1.16ˆ10´5rad/sec is the angular velocity of the
Earth’s rotation. Substituting into Equation 32 and then
expanding to first order in ⌦Ct ! 1 we can now write
the average number of observed pair coincidences as a
function of time with four parameters:

xNxyyptq “ N̄xy r1 ˘ V cos p!f t ` �qs (37)

Here we use N̄xy for the average observed number of pairs
of type xy, with the “`” and “´” corresponding to the
di↵erent pair types, e.g. cg,dh versus ch,dg; V is the
fringe visibility; and � is an overall phase o↵set reflecting
the delays in the system and the value of ✓0. The fringe
angular rate !f is

!f “ 2⇡B⌦C
�

psin ✓0 sin�✓ ` cos ✓0p1 ´ cos�✓qq (38)

which provides a direct measure of �✓ if all the other
parameters are known. In the limit of small opening
angle �✓ ! 1 the fringe rate simplifies to

!f “ 2⇡B⌦C sin ✓0
�

�✓ (39)

and we will use this form for simplicity.
Generally, measurements of frequency across a time do-

main are among the most precise; and here measurement
of the fringe rate provides direct access to the opening
angle. From this we can outline a program for dynamic
astrometry. We can make a measurement of !f every
day at the same sidereal time, i.e. the same ✓0; and then
day-by-day changes in !f over a season would provide in-
formation on the evolution of �✓ due to parallax, orbital
motions, gravitational lensing, etc., as well as relative
overall proper motion. Quantitative estimates for preci-
sion on !f and �✓ follow in Section VIB and we discuss
a nominal example using bright stars in Section VIC.

B. Precision on parameters

Without describing a particular instrument we can
picture the essential data stream as simply the num-
bers Nxy of coincident pairs observed in the two stations
L,R of the four di↵erent types txyu P tcg, ch, dg, dhu in
each successive small time interval length �t. Assuming
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and we will use this form for simplicity.
Generally, measurements of frequency across a time do-

main are among the most precise; and here measurement
of the fringe rate provides direct access to the opening
angle. From this we can outline a program for dynamic
astrometry. We can make a measurement of !f every
day at the same sidereal time, i.e. the same ✓0; and then
day-by-day changes in !f over a season would provide in-
formation on the evolution of �✓ due to parallax, orbital
motions, gravitational lensing, etc., as well as relative
overall proper motion. Quantitative estimates for preci-
sion on !f and �✓ follow in Section VIB and we discuss
a nominal example using bright stars in Section VIC.

B. Precision on parameters

Without describing a particular instrument we can
picture the essential data stream as simply the num-
bers Nxy of coincident pairs observed in the two stations
L,R of the four di↵erent types txyu P tcg, ch, dg, dhu in
each successive small time interval length �t. Assuming

Coincidence rates 
oscillate

Fringe oscillation rate is a 
direct measure of sources’ 
opening angle!

Can measure with high precision

B

∆𝜃



World-competitive precision
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the binning time is small compared to the fringe period
�t ! 1{!f then we look at the pair rate nxyptq “ Nxy{�t

as our main observables, each. With an assumption
about the statistics of the pair counts we can then fit
the observable streams nxyptq with functions of the type
in Equation 37, each using the same four parameters.
The relevant result of each overall observing session is
then an estimate of the fringe rate !f , and the rest of
the parameters. We now estimate what the uncertainty
on the parameters from one scan of length T will be.

We use the Fisher matrix formalism, which gives the
expected sensitivity for optimal estimators. The basic
quantity is the Fisher matrix, which is the expectation
value of second derivative of log likelihood of a given op-
timal fit

Fij “
⌧B2 logL

B✓iB✓j

�
. (40)

The average is over possible realizations of the data
assuming they are as given by fiducial theory. The
marginalized error on parameter ✓i is then given by

� r✓is “
a

pF´1qii (41)

During the interferometric observation scan the pair
count rates on the cg, dh, ch and dg detector combina-
tions are modelled with the functions

ncg ` ndh “ n̄

4
r1 ` V cos p!f t ` �qs , (42)

nch ` ndg “ n̄

4
r1 ´ V cos p!f t ` �qs , (43)

where n̄ is the average rate of pairs from both sources.
This is the equivalent of Equations (10), expressed as the
rate of coincidences n̄, which has units of inverse time.
The non-signal pairs coming from the same source as in
Equation (9), or other uncorrelated sources of noise such
as dark currents, etc, can be absorbed in a reduced value
of visibility V .

The details of the Fisher matrix calculation are given
in Appendix C, where it is assumed that the sampling
time interval length �t is short enough that the pair
counts will follow a Poisson distribution. The result in
Equation (C12) is that the standard deviation for the
estimate on !f is

� r!f s “ 2
?
6

V T
a
n̄TpV q (44)

where pV q is a small dimensionless auxiliary function
with a value between 1{2 and 1, defined in Equation C11.

In the idealized case where B, �, ⌦C and ✓0 are fixed
we can re-write the dimensionless fractional errors in a
very intuitive way

� r!f s
!f

“ � r�✓s
�✓

“
c

6

⇡2

1

V NCycle
?
NPair

(45)

With a prefactor of close order unity, the fractional un-
certainty on !f and on �✓ depends inversely on the

three dimensionless quantities: (i) the fringe ampli-
tude/visibility V ; (ii) the number of full fringes cycles
N

Cycle “ T!f {2⇡ that pass during the observation time
T ; and (iii) the square root of the total number of ob-
served pairs NPair “ n̄T .
Experimentally we can write the uncertainty on �✓ to

determine our sensitivity to astrometric changes between
observations on di↵erent days:

� r�✓s “
c

6

⇡2

1

V

�

B

1

T⌦C sin ✓0

1?
n̄T

(46)

We will note three quick observations from Equation (46),
and then move on to a quantitative evaluation: (i) the
uncertainty on �✓ is independent of �✓ itself, a↵ording
flexibility in choosing source pairs; (ii) the uncertainty
on �✓ goes with �{B, allowing us to gain from longer
baselines as long as the visibility is uninjured (see below);
and (iii) the overall T´3{2 dependence on the length of the
observation period is much faster than simply the T

´1{2

gain from photon pair statistics, reflecting the advantage
of being able to use the measurement of a rate.

C. Bright star example

To estimate the general magnitude of the precision that
can be reached on an opening angle measurement we will
model a simplified experiment using rounded but rea-
sonable numbers; for example let us assume � “ 1µm,
and T “ 104 sec for a one-night observation; and set
sin ✓0 “ 1{

?
2 generically.

The choice of baseline is an optimization for a given
target pair based on their angular diameters, which we
will refer to as � and assume is the same for both stars.
As long as �{B " � the stars can be considered point-
like and the visibility V will be independent of baseline,
and so in this limit a longer baseline will always improve
the resolution on �✓ as per Eq. 46. However, in the
long-baseline limit that �{B ! � the visibility will be
reduced, as mentioned in Section IVC and seen in Eq. 33,
eroding the precision on �✓ faster than the longer base-
line improves it. As such there will be an optimum base-
line for the measurement of �✓ for any particular pair of
sources. The exact value will depend on the details of the
extended source distributions, but for present purposes
we will approximate the optimum as simply satisfying
�{B “ � .
Our worked example will be for bright, high-

temperature stars, which will be a reasonable starting
point for a first experiment. We will assume stars of
magnitude 2, and with apparent angular diameters[40]
of � “0.5 mas leading to an optimal baseline of B “
200m. To allow for pair brightness asymmetry, and also
for the e↵ects of finite stellar sizes, we will assume a vis-
ibility of V “ 0.20 and approximate pV q “ 1{2.
Lastly we need to estimate the rate of pairs which will

be captured in the telescopes and detected in coincidence.

;𝑛 = average pair rate
𝑇 = total observation 
time

A modest experiment:
• Bright stars, mag 2
• 1 m2 collecting area
• 104 seconds observation
• 0.15 nsec time resolution
• 104 spectral channels
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Independent of any exact instrument design the two basic
figures of merit are the e↵ective collecting area into each
telescope and the time resolution of each single-photon
detector. We assume the aperture, collection and photon
detection e�ciency for each station provide an e↵ective
collecting area of 1 m2, and that the detectors can resolve
coincidences with resolution of ⌧ “ 0.15 nsec, both rea-
sonable values practically achievable with contemporary
photon detectors [41–43].

Equation (29) confirms the intuitive result, that the
two photons will evidence the interference e↵ects we are
describing if the time di↵erence ⌧ between detections
and the bandwidth �! allowed into the channels satisfy
⌧ �! §„ 1. Schematically, then, we picture the instru-
ment recording photon arrivals at each detector in time
bins of width ⌧ , and two hits in the same bin constitute
a coincidence. We can then set the corresponding band-
width for full interference at �⌫ “ �!{2⇡ “ 1{2⇡⌧ »
1 GHz.

We can now describe the basic observational data
stream simply as a long series of 0.15 nsec time bins, and
if any pair of detectors in the L and R stations each reg-
ister a hit in the same bin – accounting for path-length
di↵erences as per Equation (29) – then a pair of that
type is counted. To then estimate the overall pair rate
as per Equation (12) we will take the spectral flux den-
sity of a magnitude 2 star at wavelength � “ 1µm to be
S “ 2000Jy 100´2{5 » 300Jy. This will correspond to a
single photon rate in each telescope, from both sources
combined, of

2
300Jy 1m2 1GHz

hc{10´6m
» 3 ¨ 104{sec

So the occupancy in each 0.15 nsec bin will be quite low,
on the order of 10´5, for an overall pair rate on the order
of n̄ “ 0.1 Hz.

With all the values assumed above for the experimen-
tal parameters, Equation (46) yields a resolution on the
opening angle of �r�✓s » 2 mas from one night’s obser-
vation. It is interesting to note that the Fisher matrix
derivation in Appendix C holds even in the low-rate case,
where the pair rate is significantly slower than the fringe
passing rate.

Of course, using only the photons in a single 1 GHz-
wide band is a tiny fraction of the information available
in the photon field. As suggested in Figure 3 we can
imagine spectrographically dividing the light from the
same objects and carrying out the same measurement in
many sub-bands simultaneously. The full range between,
say, � “ 0.5µm and � “ 1µm spans a bandwidth of
3 ¨ 105 GHz. This plenty of room to deploy, say, 4 ¨ 104
sets of detectors each on its own GHz-wide sub-band,
increasing the total rate of observed singles and usable
interferometric pairs by this same factor.

Thinking of each wavelength sub-band as a separate
experiment with its own fringe rate, but with all the
fringe rates following the scaling in Eq. 38, we can com-
bine the information from the sub-bands statistically.

This will improve the precision on �✓ by the square
root of the number of detectors, so deploying 4 ¨ 104
sets of detectors will yield a precision on the order of
�r�✓s „ 10µas for one night’s observation in our bright
star example.

Lastly, we note that it is not the intent of this section
to describe the results obtainable from a real scientific
instrument, where any number of systematic e↵ects will
come into play. As a leading example we are not here ad-
dressing the e↵ects that atmospheric fluctuations would
have on a ground-based experiment. This is an interest-
ing topic and a full discussion is beyond the scope of this
paper. But we can note that adaptive optics have been
used successfully in compensating for atmospheric e↵ects
in astrometric measurements [44, 45]. And, for very close
pairs the paths to the two telescopes will experience the
same atmospheric phase delay, which will cancel in the
subtraction �1 ´ �2 leaving no e↵ect; this is an advan-
tage also enjoyed by HBT measurements. Rather, our
intention is simply to estimate the irreducible limitations
on the basic e↵ect that would come from finite available
photon statistics, and here the initial results are quite
encouraging for astrophysics purposes.

VII. CONCLUSIONS

We have proposed a new type of two-photon interfer-
ometry, in which photons from two separate sources are
quantum-mechanically interfered at two independent sta-
tions. At each station we employ either two independent
telescopes or rely on two independent positions on the
focal plane of a single telescope. The basic observables
are patterns of correlations between photon detections
at the two stations and the overall pattern provides a
sensitive measure of the opening angle, e.g. the relative
astrometry, of the two sources on the sky.
The scheme is in many ways similar to the intensity

interferometry pioneered by Hanbury Brown and Twiss
(HBT), but is more general and recovers more informa-
tion. In contrast to two-photon intensity interferometry
we term the new approach two-photon amplitude inter-
ferometry since the photon detections can be both corre-
lated and anti-correlated between the station’s detectors.
An advantage of this new approach, which is also a

feature of HBT measurements, is that the two receiving
stations do not need to be connected by live optical links
but require only slow classical communication channels to
compile the correlation observables. This opens up more
flexibility for longer interferometric baselines and thus
the prospect of greatly increased precision in astrometry
measurements.
We then describe an observational approach in which

correlation observables evolve sinusoidally as the time-
delay is modulated by the Earth’s rotation. Unlike the
case of interferometry for imaging, which requires mea-
suring the amplitude and phase of passing fringes, we

Track day-over-day changes in 
∆𝜃 to observe parallax, proper 
motion, orbital motion, 
gravitational lensing

(~	10-11 rad)

state of art: 7 𝜇as GAIA (2013 - ) 



Possible impact on astrophysics 
and cosmology

So far a blue-sky research

BUT if successful : orders of magnitude better astrometry

• Parallax: improved distance ladder à SN science à Dark Energy
• Proper motions: local Dark Matter patterns
• Microlensing, see motions and shape changes, Dark Matter hunting

• Gravitational waves, coherent motions of stars
• Exoplanets
• etc

https://arxiv.org/abs/2010.09100



Requirements for detectors

• Photons must be close enough in frequency and time to interfere à
temporal & spectral binning: need ~ 1 ns * 0.002 nm for 800 nm

• Fast imaging techniques are the key
– Several promising technologies: CMOS pixels+MCP, SPADs, SNSPDs, streaking
– Target 1-100 ps resolution

• Spectral binning: diffraction gratings, Echelle spectrometers
– Fringe rate resolution doesn’t depend on bin width - wider spectral binning gives lower 

visibility but same statistical precision 
à what’s important is # of spectral channels

• Photon detection efficiency: high



Timepix3 Camera à Tpx3Cam
Camera = sensor + ASIC + readout

Optical sensor with high QE developed 
at BNL

– Sensor is bump-bonded to chip Timepix3

Timepix3 ASIC:
256 x 256 array, 55 x 55 micron pixel

– 1.56 ns timing resolution
– data-driven readout, 80 Mpix/sec, no 

deadtime M. Fisher-Levine, A. Nomerotski, Timepixcam: a fast optical imager 
with time-stamping, 

Journal of Instrumentation 11 (03) (2016) C03016. 



Intensified camera is single 
photon sensitive

Image intensifier (Photonis PP0360EG)

Cricket@

Intensifier

iTpx3Cam
Quantum efficiency ~ 30%



TOA TOT

Each photon is a cluster of pixels 
à 3D (x,y,t) centoiding

Time resolution: 2 ns / photon



Spectroscopic binning

21

In collaboration with NRC (Ottawa) D.England, Y.Zhang et al

Y Zhang, D England, A Nomerotski, P Svihra et al, Multidimensional 
quantum-enhanced target detection via spectrotemporal-correlation 
measurements, Physical Review A 101 (5), 053808

P Svihra et al, Multivariate Discrimination in Quantum Target 
Detection, Appl. Phys. Lett. 117, 044001 (2020)

Pump photon wavelength vs time difference

dl*dt ~ 5 ns * 0.5 nm 



MCP Timing Performance

• Micro-channel plate (MCP) is fast
– Demonstrated resolution < 30 ps

• MCP readout for Tpx3 camera
– 50 ps, not for single photons yet



Possible technologies: SNSPD
• Superconducting 

nanowires
– Used Single Quantum 

SNSPD
– 100 ps resolution for 

single photons using 
SPDC photon pair source



Possible technologies: Streaking
• Streaking: use a spatial coordinate for time 

measurement
– Deflect photoelectrons by oscillating field
– 1 ps resolution possible



Experiments in progress

Bench-top model of two-photon 
interferometry
Ar vapor lamps with ultra-narrow band filters
Superconducting nanowire single-photon detectors

Strong HBT peak with single lamp

Supported at BNL by DOE HEP QuantISED grant 2020-21



Summary
– Two-photon amplitude interference can be used to 

improve astrometrical precision by orders of 
magnitude
• Application of quantum entanglement and teleportation 

techniques to astronomy with great potential

– Not far from practical implementation with existing 
technologies
• Motivates new technologies for fast single photon detection 

with sub-ns resolution


