Quantum-Assisted Optical Inteferometry

Some forward-looking ideas and works in progress
In collaboration with: Andrei Nomerotski, Stephen Vintskevich, Anze Slosar, Michael Keach, Olli Saira, Jonathan Schiff, Alex

Parsells, Tom Tsang (BNL)
https://www.quantastro.bnl.gov
Paul Stankus, BNL

Agenda

- The glories of interferometry
- Single-photon methods (classical)
- Two-photon methods (quantum mechanical)
- Quantum assist; futuristic ideas
- New: two-photon interference for precision astrometry
- Astrophysical applications
- Experiments in progress

Astronomy pictures of the day year decade

Radio source Cygnus A imaged at 6 cm
M87* April 11, 2017

Single-photon techniques (classical)

In classical times

Michelson Stellar Interferometer at Mt. Wilson c. 1920, after original idea by Michelson \& Fizeau c. 1890

Each source i at sky position θ_{i} produces a fringe shifted by phase amount $\Delta \phi=2 \pi B \sin \theta_{i} / \lambda$

Intensity pattern is sum over all

 sources Fourier moment!Fringe contrast(/visibility) measures amplitude of Fourier moment at wavenumber $k \approx 2 \pi B / \lambda$

Each fringe observation measures amplitude and phase of Fourier moment along baseline vector at specific wavenumber.

Repeat for many different baselines/wavenumbers and invert to reconstruct original image. (Note Earth rotation synthesis)

Dynamic convection on Antares (VLTI, ESO)

Radio
$\bar{n} \gg 1$

Can literally record entire waveform, over some band, separately at each receiver station and interfere later offline
$\bar{n} \ll 1$ Optical

One photon at a time! Need to bring paths to common point in real time

Need path length compensated to better than $c /$ bandwidth

Need path length stabilized to better than λ

How cool is this?

CHARA Collaboration, "First Resolved Images of the Eclipsing and Interacting Binary β Lyrae"; arXiv:0808.0932, The Astrophysical Journal, 684: L95-L98, 2008 September 10

Classical summary

All very well-known at Caltech/JPL! Owens Valley, Keck, etc.

- EM waves interfere with themselves; single photons do same
- Interferometer sensitive to features on angular scale $\Delta \theta \sim \frac{\lambda}{B}$
- Drawbacks in optical:
- Need live optical link between stations
- Need path length control precision on order $\lambda^{2} / \Delta \lambda$
- Atmospheric effects enter at $O(1)$
- Need to control polarization during transport
- Practical limit on baselines $\sim 100 \mathrm{~m}$

Two-photon techniques (quantum mechanical)

Prelude: Two-photon Intensity Interferometry

The curious HBT effect

"The birth of quantum optics"

$$
\operatorname{Rate}^{B C}\left(t_{B}, t_{C}\right) \propto \| \hat{a}_{B}\left(t_{B}\right) \widehat{a}_{C}\left(t_{c}\right)|\Psi\rangle \|^{2}
$$

$$
\propto \| \hat{a}_{A}\left(t_{B}-L / v\right) \widehat{a}_{A}\left(t_{c}-(L+\Delta L) / v\right)|\Psi\rangle \|^{2}
$$

$$
\text { If }\left(t_{B}-L / v\right)=\left(t_{c}-(L+\Delta L) / v\right)=t_{A}
$$ then $\operatorname{Rate}^{B C}\left(t_{B}, t_{C}\right) \propto \| \hat{a}_{A}\left(t_{A}\right)^{2}\left|\Psi_{T h}\right\rangle \|^{2}$

$$
\| \hat{a}_{A}\left(t_{A}\right)^{2}\left|\Psi_{T h}\right\rangle\left\|^{2}=2\right\| \hat{a}_{A}\left(t_{A}\right) \widehat{a}_{A}\left(t_{A}{ }^{\prime}\right)\left|\Psi_{T h}\right\rangle \|^{2}
$$

HBT and stellar sizes

Detectors

In Hanbury Brown \& Twiss (HBT) intensity interferometry, the observable is the correlation between photon detections at two separate detectors
$\frac{(\text { Pairs })}{(\text { Singles })(\text { Singles })}=\frac{\| \hat{a}_{\overrightarrow{k 1}} \hat{a}_{\overrightarrow{k 2}}|\Psi\rangle \|^{2}}{\| \hat{a}_{\overrightarrow{k 1}}|\Psi\rangle\left\|^{2}\right\| \hat{a}_{\overrightarrow{k 2}}|\Psi\rangle \|^{2}}=\left\{\begin{array}{l}1 \\ 1 \\ 2 \\ 21 \\ k 1 \\ \overrightarrow{k 1} \\ =\overrightarrow{k 2}\end{array}\right.$
Correlation
Glauber theory of photodetection, c. 1963
(It works for other bosons, too.)

High ride of HBT, I956-I974 ...and beyond?


```
arXiv.org > astro-ph > arXiv:1810.08023
```


Astrophysics > Instrumentation and Methods for Astrophysics

Intensity Interferometry revival on the Côte d'Azur

Olivier Lai, William Guerin, Farrokh Vakili, Robin Kaiser, Jean Pierre Rivet, Mathilde Fouché, Guillaume Labeyrie, Etienne Samain, David Vernet
(Submitted on 18 Oct 2018)

Fig. 3. Examples of the observed variation of correlation with baseline for three stars. (a) $\beta \mathrm{Cru}$ (1965); (b) α Eri (1965); (c) $\alpha \operatorname{Car}$ (1965).

Hanbury Brown, Davis, Allen, Rome; MNRAS 137, (1967) p393-417

HBT track record

- Advantages:

- Separate stations with only classical connection
- Arbitrary baselines, set by desired angular scale
- No path-length corrections needed
- Immune to atmospheric effects (at leading order)
- Drawbacks:
- Low rates! Need to see coincident photon pairs, only pairs with $\Delta v \Delta t<1$ will show effect; but more \& finer spectral bins will help
- Sensitive to square of image Fourier moment, washes out fine details
- Used (thus far) mainly for gross features of bright objects

Two-photon techniques (quantum mechanical)

New: Two-Photon Amplitude Interferometry

Improved single photon interference?

Longer-Baseline Telescopes Using Quantum Repeaters
Daniel Gottesman
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada
Thomas Jennewein
Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada
Sarah Croke*
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada (Received 25 October 2011; revised manuscript received 22 May 2012; published 16 August 2012)

$$
\Psi^{\text {Initial }}=\psi_{1} \psi_{2}=\frac{1}{2} \underbrace{\left(\hat{a}^{\dagger}+e^{i \delta_{1}} \hat{e}^{\dagger}\right.}_{\text {Sky photon }}) \underbrace{\left(\hat{b}^{\dagger}+e^{i \delta_{2}} \hat{f}^{\dagger}\right)}_{\text {Ground photon }}
$$

	$\hat{a}^{\dagger} \rightarrow\left(\hat{c}^{\dagger}+\hat{d}^{\dagger}\right) / \sqrt{2}$	$\hat{b}^{\dagger} \rightarrow\left(\hat{c}^{\dagger}-\hat{d}^{\dagger}\right) / \sqrt{2}$
Splitters	$\hat{e}^{\dagger} \rightarrow\left(\hat{g}^{\dagger}+\hat{h}^{\dagger}\right) / \sqrt{2}$	$\hat{f}^{\dagger} \rightarrow\left(\hat{g}^{\dagger}-\hat{h}^{\dagger}\right) / \sqrt{2}$

$$
\begin{aligned}
\Psi^{\text {Output }=} & (1 / 4)\left(\hat{c}^{\dagger} \hat{c}^{\dagger}-\hat{d}^{\dagger} \hat{d}^{\dagger}+e^{i\left(\delta_{1}+\delta_{2}\right)}\left(\hat{g}^{\dagger} \hat{g}^{\dagger}-\hat{h}^{\dagger} \hat{h}^{\dagger}\right)+\right. \\
& \left.\left(e^{i \delta_{1}}+e^{i \delta_{2}}\right)\left(\hat{c}^{\dagger} \hat{g}^{\dagger}-\hat{d}^{\dagger} \hat{h}^{\dagger}\right)+\left(e^{i \delta_{1}}-e^{i \delta_{2}}\right)\left(\hat{c}^{\dagger} \hat{h}^{\dagger}+\hat{d}^{\dagger} \hat{g}^{\dagger}\right)\right)
\end{aligned}
$$

Two-photon amplitude interferometry

$N(c g)+N(d h)-(N(c h)+N(d g))$

$N(c g)+N(d h)+N(c h)+N(d g)$

New visibility observable:

$$
\begin{aligned}
& \frac{N(c g)+N(d h)-(N(c h)+N(d g))}{N(c g)+N(d h)+N(c h)+N(d g)} \\
= & \cos \left(\delta_{1}-\delta_{2}\right) \\
= & \cos \left(\frac{2 \pi \sin \theta b}{\lambda}-\delta_{\text {Ground }}\right)
\end{aligned}
$$

- Same measurement as single-photon interferometry, if ground photons are available
- Can be interpreted as quantum teleportation of sky photon from one station to the other

Let slip the quantum technology!

PHYSICAL REVIEW LETTERS 123, 070504 (2019)

Optical Interferometry with Quantum Networks
E. T. Khabiboulline, ${ }^{1,{ }^{*}}$ J. Borregaard, ${ }^{1,2}$ K. De Greve, ${ }^{1}$ and M. D. Lukin ${ }^{1}$
${ }^{1}$ Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{2}$ QMATH, Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen \emptyset, Denmark
(0) (Received 17 September 2018; published 15 August 2019)

Idea: Efficient time-bin encoding of photon arrivals

Idea: Capture and store sky photons in quantum memories, then teleport and measure as needed

Two-photon spin-off technique

New: Two-Photon Amplitude Interferometry for Astrometry*

* Astrometry = measurement of positions of objects on the sky

HBT with two sources?

Detectors

Detectors

New idea: Coincident pair detections now sensitive to phases of incoming photons

Original motivation: gravitational waves

Idea: two photons from two sky sources

arXiv.org > astro-ph > arXiv:2010.09100

Astrophysics > Instrumentation and Methods for Astrophysics
[Submitted on 18 Oct 2020 (v1), last revised 4 Nov 2020 (this version, v2)]
Two-photon amplitude interferometry for precision astrometry
Paul Stankus, Andrei Nomerotski, Anže Slosar, Stephen Vintskevich

Topology is equivalent to GJC(2012) but now with both photons from the sky, and from different objects

Sensitive to difference in path length differences opening angle!

Does not require live optical link between stations; can use arbitrary baseline

$$
\langle N(x y)\rangle=\frac{k\left(S_{1}+S_{2}\right)^{2}}{8}\left[1 \pm V_{2 \mathrm{PS}} \cos \left[\frac{2 \pi B}{\lambda}\left(\sin \theta_{1}-\sin \theta_{2}\right)+\frac{2 \pi \Delta L}{\lambda}\right]\right]
$$

Observable is the number/rate of coincidences $x y=\{c g, d h\}$ or $\{c h, d g\}$ at different stations.
(Can do many spectral bins in parallel.)

$$
\langle N(x y)\rangle=\frac{k\left(S_{1}+S_{2}\right)^{2}}{8}\left[1 \pm V_{2 \mathrm{PS}} \cos \left[\frac{2 \pi B}{\lambda}\left(\sin \theta_{1}-\sin \theta_{2}\right)+\frac{2 \pi \Delta L}{\lambda}\right]\right]
$$

L

Observable is the number/rate of coincidences $x y=\{c g, d h\}$ or $\{c h, d g\}$ at different stations. (Can do many spectral bins in parallel.)

Idea: Earth rotation fringe scan

$$
\langle N(x y)\rangle=\frac{k\left(S_{1}+S_{2}\right)^{2}}{8}[1 \pm V_{2 \mathrm{PS}} \cos [\frac{2 \pi B}{\lambda}(\underbrace{\left.\sin \theta_{1}-\sin \theta_{2}\right)}+\frac{2 \pi \Delta L}{\lambda}]]
$$

This will evolve as the Earth rotates

$$
\left\langle N_{x y}\right\rangle(t)=\bar{N}_{x y}\left[1 \pm V \cos \left(\omega_{f} t+\Phi\right)\right] \quad \text { Coincidence rates oscillate }
$$

$$
\omega_{f}=\frac{2 \pi B \Omega_{\oplus} \sin \theta_{0}}{\lambda} \Delta \theta
$$

Fringe oscillation rate is a direct measure of sources' opening angle!
Can measure with high precision

World-competitive precision

$$
\sigma[\Delta \theta]=\sqrt{\frac{6}{\pi^{2} \kappa}} \frac{1}{V} \frac{\lambda}{B} \frac{1}{T \Omega_{\oplus} \sin \theta_{0}} \frac{1}{\sqrt{\bar{n} T}} \quad \begin{aligned}
& \bar{n}=\text { average pair rate } \\
& T=\text { total observation time }
\end{aligned}
$$

A modest experiment:

- Bright stars, mag 2
- $1 \mathrm{~m}^{2}$ collecting area
- 10^{4} seconds observation
- 0.15 nsec time resolution

Idea: Dynamic Astrometry

Track day-over-day changes in $\Delta \theta$ to observe parallax, proper motion, orbital motion, gravitational lensing

- 10^{4} spectral channels

$$
\sigma[\Delta \theta] \sim 10 \mu \mathrm{as}\left(\sim 10^{-11} \mathrm{rad}\right)
$$

Astrophysics topics in dynamic astrometry

- Parallax: improved distance ladder
- Proper motions: local dark matter patterns
- Microlensing, see motions and shape changes
- Gravitational waves at mid-frequency
- Quantum applications, e.g. quantum key distribution

Further ideas are encouraged!

Experiments in progress

Supported at BNL by DOE HEP
QuantISED grant 2020-21

Check: We can see HBT coincidence enhancement peak in all channel combinations

Future detector requirements

- Two essential figures of merit:
- Number of detectors/spectroscopic channels (more pairs)
- Detector time resolution (wider spectroscopic bins, more pairs per detector)
- Fast pixel array (Timepix) + dispersive spectrograph (Echele?)
- Very fast single photon detectors - improved SNSPD?

Intensified camera is single photon sensitive

Quantum efficiency ~ 30\%
A.Nomerotski, Imaging and time stamping of photons with nanosecond resolution in Timepix based optical cameras, NIM A 937 (2019) 26

Spectroscopic binning already demonstrated

In collaboration with NRC (Ottawa) D.England, Y.Zhang et al

Y Zhang, D England, A Nomerotski, P Svihra et al, Multidimensional quantum-enhanced target detection via spectrotemporal-correlation measurements, Physical Review A 101 (5), 053808

P Svihra et al, Multivariate Discrimination in Quantum Target Detection, Appl. Phys. Lett. 117, 044001 (2020)

Just the beginning! A broad future program

- Observations with >2 receivers and >2 objects; phase closure?
- More complicated quantum states (GHZ, etc.)
- New kinds of entanglement distribution (polarization qubits, e.g.)
- Involvement of quantum memories to enhance pair rates; local expertise (SBU) with ${ }^{87} \mathrm{Rb}$ vapor room-temp QM's
- Atmospheric effect compensation
- On-sky experiments possible soon!

Points to take home

- Classical, single-photon interferometry reaches much higher resolutions, order milli-arcsec, than single telescopes; but practical issues limit maximum baselines
- Two-photon interferometry can permit independent stations over longer baselines; historical HBT is one example
- Two-photon techniques are in general quantum mechanical; new ideas suggest quantum technology can enhance interferometry
- One specific two-photon technique addresses dynamic astrometry, which will have interesting astrophysics applications
- There is a potentially broad program in quantum-assisted optical interferometry ahead

Backups

Hybrid pixel detectors

Have roots in R\&D for LEP/LHC vertex detectors

credit: IZM

Lukas Tlustos and Erik H. M. Heijne, Performance and limitations of high granularity single photon processing X-ray imaging detectors, in CERN proceedings (2005)

- Decouple readout chip and sensor
- Optimize technologies for chip and sensor separately

Use different sensors with same readout, versatile approach for x-rays (Si, CZT)
\rightarrow we will use OPTICAL sensors

Timepix3 Camera \rightarrow Tpx3Cam

Camera $=$ sensor + ASIC + readout

Optical sensor with high QE developed at BNL

- Sensor is bump-bonded to chip Timepix3

Timepix3 ASIC:
256×256 array, 55×55 micron pixel

- 1.56 ns timing resolution
- data-driven readout, $80 \mathrm{Mpix} / \mathrm{sec}$, no deadtime

M. Fisher-Levine, A. Nomerotski, Timepixcam: a fast optical imager with time-stamping, Journal of Instrumentation 11 (03) (2016) C03016.

